A035310
Let f(n) = number of ways to factor n = A001055(n); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
Original entry on oeis.org
1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729, 37195337408, 289517846210, 2352125666883, 19841666995265, 173888579505200, 1577888354510786, 14820132616197925, 143746389756336173, 1438846957477988926
Offset: 1
a(3) = 12 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=3, f(12)=4, f(30)=5 and 3+4+5 = 12.
From _Gus Wiseman_, Dec 31 2019: (Start)
The a(1) = 1 through a(3) = 12 multiset partitions of strongly normal multisets:
{{1}} {{1,1}} {{1,1,1}}
{{1,2}} {{1,1,2}}
{{1},{1}} {{1,2,3}}
{{1},{2}} {{1},{1,1}}
{{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
(End)
Sequence
A035341 counts the ordered cases. Tables
A093936 and
A095705 distribute the values; e.g. 81199 = 30 + 536 + 3036 + 6181 + 10726 + 11913 + 14548 + 13082 + 21147.
The case with empty intersection is
A317755.
The case of strict parts is
A330783.
Multiset partitions of integer partitions are
A001970.
Unlabeled multiset partitions are
A007716.
-
with(numtheory):
g:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, g(n/d, d)), d=divisors(n) minus {1, n}))
end:
b:= proc(n, i, l)
`if`(n=0, g(mul(ithprime(t)^l[t], t=1..nops(l))$2),
`if`(i<1, 0, add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> b(n$2, []):
seq(a(n), n=1..10); # Alois P. Heinz, May 26 2013
-
g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; b[n_, i_, l_] := If[n == 0, g[p = Product[Prime[t]^l[[t]], {t, 1, Length[l]}], p], If[i < 1, 0, Sum[b[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := b[n, n, {}]; Table[Print[an = a[n]]; an, {n, 1, 13}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)}
seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020
-
from sympy.core.cache import cacheit
from sympy import divisors, isprime, prime
from operator import mul
@cacheit
def g(n, k):
return (0 if n > k else 1) + (0 if isprime(n) else sum(g(n//d, d) for d in divisors(n)[1:-1] if d <= k))
@cacheit
def b(n, i, l):
if n==0:
p = reduce(mul, (prime(t + 1)**l[t] for t in range(len(l))))
return g(p, p)
else:
return 0 if i<1 else sum([b(n - i*j, i - 1, l + [i]*j) for j in range(n//i + 1)])
def a(n):
return b(n, n, [])
for n in range(1, 11): print(a(n)) # Indranil Ghosh, Aug 19 2017, after Maple code
A330465
Number of non-isomorphic series-reduced rooted trees whose leaves are multisets with a total of n elements.
Original entry on oeis.org
1, 4, 14, 87, 608, 5573, 57876, 687938, 9058892, 130851823, 2048654450, 34488422057, 620046639452, 11839393796270, 238984150459124, 5079583100918338, 113299159314626360, 2644085918303683758, 64393240540265515110, 1632731130253043991252, 43013015553755764179000
Offset: 1
Non-isomorphic representatives of the a(3) = 14 trees:
((1)((1)(1))) ((1)((1)(2))) ((1)((2)(3))) ((2)((1)(1)))
((1)(1)(1)) ((1)(1)(2)) ((1)(2)(3)) ((2)(1,1))
((1)(1,1)) ((1)(1,2)) ((1)(2,3))
(1,1,1) (1,1,2) (1,2,3)
The version where leaves are atoms is
A318231.
The case with sets as leaves is
A330624.
The case with disjoint sets as leaves is
A141268.
The singleton-reduced version is
A330470.
Cf.
A000311,
A000669,
A004114,
A005804,
A007716,
A281118,
A289501,
A292504,
A316651,
A316652,
A318812,
A319312,
A330471,
A330474,
A330625,
A339645.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sEulerT(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n ) + polcoef(p,n)); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020
A330475
Number of balanced reduced multisystems whose atoms constitute a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 2, 9, 85, 1143, 25270
Offset: 0
The a(0) = 1 through a(3) = 9 multisystems:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
The (weakly) normal version is
A330655.
The case where the atoms are {1..n} is
A005121.
The case where the atoms are all 1's is
A318813.
Multiset partitions of strongly normal multisets are
A035310.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330470
Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n.
Original entry on oeis.org
1, 1, 2, 7, 39, 236, 1836, 16123, 162008, 1802945, 22012335, 291290460, 4144907830, 62986968311, 1016584428612, 17344929138791, 311618472138440, 5875109147135658, 115894178676866576, 2385755803919949337, 51133201045333895149, 1138659323863266945177, 26296042933904490636133
Offset: 0
Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x:
(1111) (1112) (1122) (1123) (1234)
(1(111)) (1(112)) (1(122)) (1(123)) (1(234))
(11(11)) (11(12)) (11(22)) (11(23)) (12(34))
((11)(11)) (12(11)) (12(12)) (12(13)) ((12)(34))
(1(1(11))) (2(111)) ((11)(22)) (2(113)) (1(2(34)))
((11)(12)) (1(1(22))) (23(11))
(1(1(12))) ((12)(12)) ((11)(23))
(1(2(11))) (1(2(12))) (1(1(23)))
(2(1(11))) ((12)(13))
(1(2(13)))
(2(1(13)))
(2(3(11)))
The case with all atoms equal or all atoms different is
A000669.
Not requiring singleton-reduction gives
A330465.
Labeled versions are
A316651 (normal orderless) and
A330471 (strongly normal).
The case where the leaves are sets is
A330626.
Cf.
A000311,
A005121,
A005804,
A141268,
A213427,
A292504,
A292505,
A318812,
A318848,
A318849,
A330467,
A330469,
A330474,
A330624.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
A330469
Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.
Original entry on oeis.org
1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0
The a(3) = 24 trees:
(123) (122) (112) (111)
((1)(23)) ((1)(22)) ((1)(12)) ((1)(11))
((2)(13)) ((2)(12)) ((2)(11)) ((1)(1)(1))
((3)(12)) ((1)(2)(2)) ((1)(1)(2)) ((1)((1)(1)))
((1)(2)(3)) ((1)((2)(2))) ((1)((1)(2)))
((1)((2)(3))) ((2)((1)(2))) ((2)((1)(1)))
((2)((1)(3)))
((3)((1)(2)))
The singleton-reduced version is
A316651.
The strongly normal case is
A330467.
The case when leaves are sets is
A330764.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A316652,
A318812,
A318849,
A319312,
A330625.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019
A330675
Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0
The a(2) = 2 and a(3) = 6 multisystems:
{1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
{{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
{{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
{{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
{{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
{{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
{{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
{{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
{{2}}{{3}{11}} {{2}}{{3}{14}}
{{23}}{{1}{1}} {{23}}{{1}{4}}
{{3}}{{1}{12}} {{2}}{{4}{13}}
{{3}}{{2}{11}} {{24}}{{1}{3}}
{{3}}{{1}{24}}
{{3}}{{2}{14}}
{{3}}{{4}{12}}
{{34}}{{1}{2}}
{{4}}{{1}{23}}
{{4}}{{2}{13}}
{{4}}{{3}{12}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330475.
The version where the atoms are the prime indices of n is
A330665.
The (weakly) normal version is
A330676.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of strongly normal multisets are
A035310.
Series-reduced rooted trees with strongly normal leaves are
A316652.
Cf.
A000311,
A000669,
A001055,
A001678,
A005121,
A005804,
A316651,
A318812,
A330467,
A330474,
A330625,
A330628,
A330664,
A330677,
A330679.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330471
Number of series/singleton-reduced rooted trees on strongly normal multisets of size n.
Original entry on oeis.org
1, 1, 2, 9, 69, 623, 7803, 110476, 1907428
Offset: 0
The a(0) = 1 through a(3) = 9 trees:
() (1) (11) (111)
(12) (112)
(123)
((1)(11))
((1)(12))
((1)(23))
((2)(11))
((2)(13))
((3)(12))
The a(4) = 69 trees, with singleton leaves (x) replaced by just x:
(1111) (1112) (1122) (1123) (1234)
(1(111)) (1(112)) (1(122)) (1(123)) (1(234))
(11(11)) (11(12)) (11(22)) (11(23)) (12(34))
((11)(11)) (12(11)) (12(12)) (12(13)) (13(24))
(1(1(11))) (2(111)) (2(112)) (13(12)) (14(23))
((11)(12)) (22(11)) (2(113)) (2(134))
(1(1(12))) ((11)(22)) (23(11)) (23(14))
(1(2(11))) (1(1(22))) (3(112)) (24(13))
(2(1(11))) ((12)(12)) ((11)(23)) (3(124))
(1(2(12))) (1(1(23))) (34(12))
(2(1(12))) ((12)(13)) (4(123))
(2(2(11))) (1(2(13))) ((12)(34))
(1(3(12))) (1(2(34)))
(2(1(13))) ((13)(24))
(2(3(11))) (1(3(24)))
(3(1(12))) ((14)(23))
(3(2(11))) (1(4(23)))
(2(1(34)))
(2(3(14)))
(2(4(13)))
(3(1(24)))
(3(2(14)))
(3(4(12)))
(4(1(23)))
(4(2(13)))
(4(3(12)))
The case with all atoms different is
A000311.
The case with all atoms equal is
A196545.
The case where the leaves are sets is
A330628.
The version for just normal (not strongly normal) is
A330654.
Cf.
A000669,
A004114,
A005121,
A005804,
A281118,
A318812,
A318848,
A319312,
A330465,
A330467,
A330475.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],Length[#]>1&&Length[#]
A330625
Number of series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with multiset union a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 3, 14, 123, 1330, 19694
Offset: 0
The a(1) = 1 through a(3) = 14 trees:
{1} {1,2} {1,2,3}
{{1},{1}} {{1},{1,2}}
{{1},{2}} {{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
{{1},{{1},{1}}}
{{1},{{1},{2}}}
{{1},{{2},{3}}}
{{2},{{1},{1}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
The generalization where the leaves are multisets is
A330467.
The singleton-reduced case is
A330628.
The case with all atoms distinct is
A005804.
The case with all atoms equal is
A196545.
The case where all leaves are singletons is
A330471.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
srtrees[m_]:=Prepend[Join@@Table[Tuples[srtrees/@p],{p,Select[mps[m],Length[#1]>1&]}],m];
Table[Sum[Length[Select[srtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]
A330628
Number of series/singleton-reduced rooted trees on strongly normal multisets of size n whose leaves are sets (not necessarily disjoint).
Original entry on oeis.org
1, 1, 1, 5, 42, 423, 5458, 80926
Offset: 0
The a(4) = 42 trees:
{{1}{1}{12}} {{12}{12}} {{1}{123}} {1234}
{{1}{{1}{12}}} {{1}{2}{12}} {{12}{13}} {{1}{234}}
{{1}{{2}{12}}} {{1}{1}{23}} {{12}{34}}
{{2}{{1}{12}}} {{1}{2}{13}} {{13}{24}}
{{1}{3}{12}} {{14}{23}}
{{1}{{1}{23}}} {{2}{134}}
{{1}{{2}{13}}} {{3}{124}}
{{1}{{3}{12}}} {{4}{123}}
{{2}{{1}{13}}} {{1}{2}{34}}
{{3}{{1}{12}}} {{1}{3}{24}}
{{1}{4}{23}}
{{2}{3}{14}}
{{2}{4}{13}}
{{3}{4}{12}}
{{1}{{2}{34}}}
{{1}{{3}{24}}}
{{1}{{4}{23}}}
{{2}{{1}{34}}}
{{2}{{3}{14}}}
{{2}{{4}{13}}}
{{3}{{1}{24}}}
{{3}{{2}{14}}}
{{3}{{4}{12}}}
{{4}{{1}{23}}}
{{4}{{2}{13}}}
{{4}{{3}{12}}}
The generalization where leaves are multisets is
A330471.
The non-singleton-reduced version is
A330625.
The case with all atoms distinct is
A000311.
Strongly normal multiset partitions are
A035310.
Cf.
A000669,
A004111,
A004114,
A005804,
A196545,
A281118,
A330465,
A330467,
A330624,
A330654,
A330668.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
Table[Sum[Length[Select[ssrtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]
A330627
Number of non-isomorphic phylogenetic trees with n nodes.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 4, 5, 9, 14, 24, 39, 69, 116, 205, 357, 632, 1118, 2001, 3576, 6445, 11627, 21080, 38293, 69819, 127539, 233644, 428825, 788832, 1453589, 2683602, 4962167, 9190155, 17044522, 31655676, 58866237, 109600849, 204293047, 381212823, 712073862
Offset: 1
Non-isomorphic representatives of the a(2) = 1 through a(9) = 9 trees (commas and outer brackets elided):
1 12 123 1234 12345 123456 1234567 12345678
(1)(2) (1)(23) (1)(234) (1)(2345) (1)(23456)
(12)(34) (12)(345) (12)(3456)
(1)(2)(3) (1)(2)(34) (123)(456)
(1)((2)(3)) (1)(2)(345)
(1)(23)(45)
(1)((2)(34))
(1)(2)(3)(4)
(12)((3)(4))
Phylogenetic trees by number of labels are
A005804, with unlabeled version
A141268.
Balanced phylogenetic trees are
A320154.
Cf.
A000311,
A000669,
A001678,
A004114,
A005121,
A007716,
A048816,
A060356,
A330465,
A330467,
A330469.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, EulerT(v)[n] - v[n] + 1)); v} \\ Andrew Howroyd, Jan 02 2021
Showing 1-10 of 10 results.
Comments