cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A317757 Number of non-isomorphic multiset partitions of size n such that the blocks have empty intersection.

Original entry on oeis.org

1, 0, 1, 4, 17, 56, 205, 690, 2446, 8506, 30429, 109449, 402486, 1501424, 5714194, 22132604, 87383864, 351373406, 1439320606, 6003166059, 25488902820, 110125079184, 483987225922, 2162799298162, 9823464989574, 45332196378784, 212459227340403, 1010898241558627, 4881398739414159
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 17 multiset partitions:
  {1}{234},{2}{111},{2}{113},{11}{22},{11}{23},{12}{34},
  {1}{1}{22},{1}{1}{23},{1}{2}{11},{1}{2}{12},{1}{2}{13},{1}{2}{34},{2}{3}{11},
  {1}{1}{1}{2},{1}{1}{2}{2},{1}{1}{2}{3},{1}{2}{3}{4}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]]],{n,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
    a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q,n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f,k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t], O(x*x^n) ))/if(k,1-x^k,1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023

Extensions

a(8)-a(10) from Gus Wiseman, Sep 27 2018
a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, May 30 2023

A381718 Number of normal multiset partitions of weight n into sets with distinct sums.

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 549, 3184, 20353, 141615, 1063399, 8554800, 73281988, 665141182, 6369920854, 64133095134, 676690490875, 7462023572238, 85786458777923, 1025956348473929, 12739037494941490
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(3) = 6 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,2}}
                    {{2},{1,3}}
                    {{1},{2},{3}}
The a(4) = 23 factorizations:
  2*3*6  5*30    3*30    2*30    210
         10*15   6*15    6*10    2*105
         2*5*15  2*3*15  2*3*10  3*70
         3*5*10                  5*42
                                 7*30
                                 6*35
                                 10*21
                                 2*3*35
                                 2*5*21
                                 2*7*15
                                 3*5*14
                                 2*3*5*7
		

Crossrefs

For distinct blocks instead of sums we have A116539, see A050326.
Without distinct sums we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279785.
Without strict blocks we have A326519.
Factorizations of this type are counted by A381633.
For constant instead of strict blocks we have A382203.
For distinct sizes instead of sums we have A382428, non-strict blocks A326517.
For equal instead of distinct block-sums we have A382429, non-strict blocks A326518.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(10)-a(11) from Robert Price, Mar 31 2025
a(12)-a(20) from Christian Sievers, Apr 05 2025

A317755 Number of multiset partitions of strongly normal multisets of size n such that the blocks have empty intersection.

Original entry on oeis.org

0, 1, 6, 30, 130, 629, 2930, 15019, 78224, 438626, 2548481
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(3) = 6 strongly normal multiset partitions with empty intersection:
  {{2},{1,1}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{1},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]],{n,6}]

Extensions

a(10)-a(11) from Robert Price, May 08 2021

A258466 Number of partitions of n into parts of sorts {1, 2, ... } which are introduced in ascending order.

Original entry on oeis.org

1, 1, 3, 8, 25, 82, 307, 1256, 5688, 28044, 149598, 855811, 5217604, 33711592, 229798958, 1646312694, 12355368849, 96861178984, 791258781708, 6720627124140, 59234364096426, 540812222095821, 5106663817156741, 49798678280227488, 500857393908312587
Offset: 0

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Comments

Also number of ways of partitioning a multiset with multiplicities some partition of n into disjoint blocks. Example: a(4) = 25: 1111; 111,2; 1112; 11,22; 1122; 11,2,3; 11,23; 112,3; 113,2; 1123; 1,2,3,4; 1,2,34; 1,23,4; 1,24,3; 1,234; 12,3,4; 12,34; 13,2,4; 13,24; 14,2,3; 14,23; 123,4; 124,3; 134,2; 1234. Formula: a(n) is the sum of Bell numbers of lengths of all integer partitions of n. - Gus Wiseman, Feb 17 2016

Examples

			a(3) = 8: 1a1a1a, 2a1a, 3a, 1a1a1b, 1a1b1a, 1a1b1b, 2a1b, 1a1b1c (in this example the sorts are labeled a, b, c).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> add(T(n, k), k=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    Table[Plus @@ BellB /@ Length /@ IntegerPartitions[n], {n, 0, 24}] (* Gus Wiseman, Feb 17 2016 *)
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A256130(n,k).
a(n) ~ Bell(n) = A000110(n). - Vaclav Kotesovec, Jun 01 2015
G.f.: Sum_{k>=0} Bell(k) * x^k / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020

A382216 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 208, 434
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

We call a multiset normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The multiset {1,2,2,3,3} can be partitioned into a set of sets with distinct sums in 4 ways:
  {{2,3},{1,2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
so is counted under a(5).
The multisets counted by A382214 but not by A382216 are:
  {1,1,1,1,2,2,3,3,3}
  {1,1,2,2,2,2,3,3,3}
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Twice-partitions of this type are counted by A279785, without distinct sums A358914.
Factorizations of this type are counted by A381633, without distinct sums A050326.
Normal multiset partitions of this type are counted by A381718, A116539.
The complement is counted by A382202.
Without distinct sums we have A382214, complement A292432.
The case of a unique choice is counted by A382459, without distinct sums A382458.
For Heinz numbers: A293243, A381806, A382075, A382200.
For integer partitions: A381990, A381992, A382077, A382078.
Strong version: A382523, A382430, A381996, A292444.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,5}]

A096443 Number of partitions of a multiset whose signature is the n-th partition (in Mathematica order).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 11, 15, 7, 12, 16, 21, 26, 36, 52, 11, 19, 29, 38, 31, 52, 74, 66, 92, 135, 203, 15, 30, 47, 64, 57, 98, 141, 109, 137, 198, 296, 249, 371, 566, 877, 22, 45, 77, 105, 97, 171, 250, 109, 212, 269, 392, 592, 300, 444, 560, 850, 1315, 712, 1075
Offset: 0

Views

Author

Jon Wild, Aug 11 2004

Keywords

Comments

The signature of a multiset is the partition consisting of the multiplicities of its elements; e.g., {a,a,a,b,c} is represented by [3,1,1]. The Mathematica order for partitions orders by ascending number of total elements, then by descending numerical order of its representation. The list begins:
n.....#elements.....n-th partition
0.....0 elements:....[]
1.....1 element:.....[1]
2.....2 elements:....[2]
3....................[1,1]
4.....3 elements:....[3]
5....................[2,1]
6....................[1,1,1]
7.....4 elements:....[4]
8....................[3,1]
9....................[2,2]
10...................[2,1,1]
11...................[1,1,1,1]
12....5 elements:....[5]
13...................[4,1]
A000041 and A000110 are subsequences for conjugate partitions. A000070 and A035098 are also subsequences for conjugate partitions. - Alford Arnold, Dec 31 2005
A002774 and A020555 is another pair of subsequences for conjugate partitions. - Franklin T. Adams-Watters, May 16 2006

Examples

			The 10th partition is [2,1,1]. The partitions of a multiset whose elements have multiplicities 2,1,1 - for example, {a,a,b,c} - are:
{{a,a,b,c}}
{{a,a,b},{c}}
{{a,a,c},{b}}
{{a,b,c},{a}}
{{a,a},{b,c}}
{{a,b},{a,c}}
{{a,a},{b},{c}}
{{a,b},{a},{c}}
{{a,c},{a},{b}}
{{b,c},{a},{a}}
{{a},{a},{b},{c}}
We see there are 11 partitions of this multiset, so a(10)=11.
Also, a(n) is the number of distinct factorizations of A063008(n). For example, A063008(10) = 60 and 60 has 11 factorizations: 60, 30*2, 20*3, 15*4, 15*2*2, 12*5, 10*6, 10*3*2, 6*5*2, 5*4*3, 5*3*2*2 which confirms that a(10) = 11.
		

Crossrefs

Programs

  • Mathematica
    MultiPartiteP[n : {___Integer?NonNegative}] :=
    Block[{p, $RecursionLimit = 1024, firstPositive},
      firstPositive =
       Compile[{{vv, _Integer, 1}},
        Module[{k = 1}, Do[If[el == 0, k++, Break[]], {el, vv}]; k]];
      p[{0 ...}] := 1;
      p[v_] :=
       p[v] = Module[{len = Length[v], it, k, zeros, sum, pos, gcd},
         it = Array[k, len];
         pos = firstPositive[v];
         zeros = ConstantArray[0, len];
         sum = 0;
         Do[If[it == zeros, Continue[]];
          gcd = GCD @@ it;
          sum += it[[pos]] DivisorSigma[-1, gcd] p[v - it];,
          Evaluate[Sequence @@ Thread[{it, 0, v}]]];
         sum/v[[pos]]];
      p[n]];
    ParallelMap[MultiPartiteP,
    Flatten[Table[IntegerPartitions[k], {k, 0, 8}], 1]]
    (* Oleksandr Pavlyk, Jan 23 2011 *)

Extensions

Edited by Franklin T. Adams-Watters, May 16 2006

A382214 Number of normal multisets of size n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 210, 436, 894
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

First differs from A382216 at a(9) = 210, A382216(9) = 208.
We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset {1,1,1,1,2,2,3,3,3} has partition {{1},{3},{1,2},{1,3},{1,2,3}}, so is counted under a(9).
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Factorizations of this type are counted by A050326, distinct sums A381633.
Normal multiset partitions of this type are counted by A116539, distinct sums A381718.
The complement is counted by A292432.
Twice-partitions of this type are counted by A358914, distinct sums A279785.
The strong version is A381996, complement A292444.
For integer partitions we have A382077, ranks A382200, complement A382078, ranks A293243.
For distinct sums we have A382216, complement A382202.
The case of a unique choice is counted by A382458, distinct sums A382459.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@ Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]& /@ sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]],{n,0,5}]

A330475 Number of balanced reduced multisystems whose atoms constitute a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 2, 9, 85, 1143, 25270
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(0) = 1 through a(3) = 9 multisystems:
  {}  {1}  {1,1}  {1,1,1}
           {1,2}  {1,1,2}
                  {1,2,3}
                  {{1},{1,1}}
                  {{1},{1,2}}
                  {{1},{2,3}}
                  {{2},{1,1}}
                  {{2},{1,3}}
                  {{3},{1,2}}
		

Crossrefs

The (weakly) normal version is A330655.
The maximum-depth case is A330675.
The case where the atoms are {1..n} is A005121.
The case where the atoms are all 1's is A318813.
The tree version is A330471.
Multiset partitions of strongly normal multisets are A035310.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

A035341 Sum of ordered factorizations over all prime signatures with n factors.

Original entry on oeis.org

1, 1, 5, 25, 173, 1297, 12225, 124997, 1492765, 19452389, 284145077, 4500039733, 78159312233, 1460072616929, 29459406350773, 634783708448137, 14613962109584749, 356957383060502945, 9241222160142506097, 252390723655315856437, 7260629936987794508973
Offset: 0

Views

Author

Keywords

Comments

Let f(n) = number of ordered factorizations of n (A074206(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
When the unordered spectrum A035310 is so ordered the sequences A000041 A000070 ...A035098 A000110 yield A000079 A001792 ... A005649 A000670 respectively.
Row sums of A095705. - David Wasserman, Feb 22 2008
From Ludovic Schwob, Sep 23 2023: (Start)
a(n) is the number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums. The a(3) = 25 matrices:
[1 1 1] [1 2] [2 1] [3]
.
[1 1] [1 1] [1 1 0] [1 0 1] [0 1 1] [2] [0 2] [2 0]
[1 0] [0 1] [0 0 1] [0 1 0] [1 0 0] [1] [1 0] [0 1]
.
[1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
[1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
[1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
.
[0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [1 0 0] [0 1 0] [1 0 0] (End)

Examples

			a(3) = 25 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=4, f(12)=8, f(30)=13 and 4+8+13 = 25.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*If[j == 0, 1, Binomial[i + k - 1, k - 1]^j], {j, 0, n/i}]]];
    a[n_] := Sum[Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz, updated Dec 15 2020 *)
  • PARI
    R(n,k)=Vec(-1 + 1/prod(j=1, n, 1 - binomial(k+j-1,j)*x^j + O(x*x^n)))
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023

Formula

a(n) ~ c * n! / log(2)^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.8246323... . - Vaclav Kotesovec, Jan 21 2017

Extensions

More terms from Erich Friedman.
More terms from David Wasserman, Feb 22 2008

A129306 Resort sequence A096443 by source partition as described by A053445 and A126442.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 7, 11, 15, 9, 7, 12, 21, 36, 52, 16, 26, 11, 19, 38, 74, 135, 203, 29, 52, 92, 31, 66, 15, 30, 64, 141, 296, 566, 877, 47, 98, 198, 371, 57, 109, 137, 249, 22, 45, 105, 250, 592, 1315, 2610, 4140, 77, 171, 392, 850, 1663, 97, 212, 444, 269, 560, 1075
Offset: 1

Views

Author

Alford Arnold, May 07 2007

Keywords

Comments

The first array is described in A126442 and is the hook case. Sequence A129305 encodes the multisets counted by A096443 and A129306.

Examples

			a(11) = 9 because 2+2= 4 starting a new array. The arrays begin as follows:
1.....2.....3.....5......7......11.....15.....22
......2.....4.....7......12.....19.....30.....45
............5.....11.....21.....38.....64.....105
..................15.....36.....74.....141....250
.........................52.....135....296....592
................................203....566....1315
.......................................877....2610
..............................................4140
..................9......16.....29.....47.....77
.........................26.....52.....98.....171
................................92.....198....392
.......................................371....850
..............................................1663
................................31.....57.....97
.......................................109....212
..............................................444
................................66.....137....269
.......................................249....560
..............................................1075
..............................................109
..............................................300
..............................................712
which sums to
1.....4....12....47....170....750....3255.....16010
		

Crossrefs

Showing 1-10 of 32 results. Next