cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A129306 Resort sequence A096443 by source partition as described by A053445 and A126442.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 7, 11, 15, 9, 7, 12, 21, 36, 52, 16, 26, 11, 19, 38, 74, 135, 203, 29, 52, 92, 31, 66, 15, 30, 64, 141, 296, 566, 877, 47, 98, 198, 371, 57, 109, 137, 249, 22, 45, 105, 250, 592, 1315, 2610, 4140, 77, 171, 392, 850, 1663, 97, 212, 444, 269, 560, 1075
Offset: 1

Views

Author

Alford Arnold, May 07 2007

Keywords

Comments

The first array is described in A126442 and is the hook case. Sequence A129305 encodes the multisets counted by A096443 and A129306.

Examples

			a(11) = 9 because 2+2= 4 starting a new array. The arrays begin as follows:
1.....2.....3.....5......7......11.....15.....22
......2.....4.....7......12.....19.....30.....45
............5.....11.....21.....38.....64.....105
..................15.....36.....74.....141....250
.........................52.....135....296....592
................................203....566....1315
.......................................877....2610
..............................................4140
..................9......16.....29.....47.....77
.........................26.....52.....98.....171
................................92.....198....392
.......................................371....850
..............................................1663
................................31.....57.....97
.......................................109....212
..............................................444
................................66.....137....269
.......................................249....560
..............................................1075
..............................................109
..............................................300
..............................................712
which sums to
1.....4....12....47....170....750....3255.....16010
		

Crossrefs

A131888 Follow each least prime signature by the corresponding value in the array A096443.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 2, 8, 3, 12, 4, 30, 5, 16, 5, 24, 7, 36, 9, 60, 11, 210, 15, 32, 7, 48, 12, 72, 16, 120, 21, 180, 26, 420, 36, 2310, 52, 64, 11, 96, 19, 144, 29, 240, 38, 216, 31, 360, 52, 840, 74, 900, 66, 1260, 92, 4620, 135, 30030, 203
Offset: 0

Views

Author

Alford Arnold, Jul 23 2007

Keywords

Examples

			Array A096443 begins
1..1..2..3...5...7..11..15...22...30
.....2..4...7..12..19..30...45...67
............9..16..29..47...77..118
........5..11..21..38..64..105..165
etc
so the sequence begins 1 1 2 1 4 2 6 2 8 3 12 4 30 5 ...
		

Crossrefs

A302242 Total weight of the n-th multiset multisystem. Totally additive with a(prime(n)) = Omega(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 2, 1, 3, 2, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 3, 1, 4, 0, 3, 2, 1, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 2, 3, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets of positive integers. The n-th multiset multisystem is constructed by factoring n into prime numbers and then factoring each prime index into prime numbers and taking their prime indices. This produces a unique multiset multisystem for each n, and every possible multiset multisystem is so constructed as n ranges over all positive integers.

Examples

			Sequence of finite multisets of finite multisets of positive integers begins: (), (()), ((1)), (()()), ((2)), (()(1)), ((11)), (()()()), ((1)(1)), (()(2)), ((3)), (()()(1)), ((12)), (()(11)), ((1)(2)), (()()()()), ((4)), (()(1)(1)), ((111)), (()()(2)).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(j[2], j=ifactors(pi(i[1]))[2])*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 07 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[PrimeOmega/@primeMS[n]],{n,100}]
  • PARI
    a(n,f=factor(n))=sum(i=1,#f~, bigomega(primepi(f[i,1]))*f[i,2]) \\ Charles R Greathouse IV, Nov 10 2021

A269134 Number of combinatory separations of normal multisets of weight n.

Original entry on oeis.org

1, 4, 14, 57, 223, 948, 3940, 16994, 72964, 317959, 1385592, 6085763, 26738139, 117939291, 520553999, 2301781692, 10181786176, 45074744448, 199558036891, 883670342156, 3912320450786
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2016

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
If and only if there exists a multiset partition p whose multiset union has type h and where g = {g_1,...,g_n} is the multiset of types of the blocks of p, there exists a *combinatory separation* which is regarded as a multi-arrow p:h<=g. For example 1122<={12,11} is *not* a combinatory separation because one cannot partition a multiset of type 1122 into two blocks where one block has two distinct elements and the other block has two equal elements. Normal multisets N and combinatory separations S comprise a multi-order (N,S). The value of a(n) is the total number of *distinct* combinatory separations h<=g where h has weight n.
The term "combinatory separation" is inspired by MacMahon's inscrutable "Combinatory Analysis" (1915) which states: "A partition of any number is "separated" into "separates" by writing down a set [sic] of partitions, each partition in its own brackets, from left to right so that when all of the parts of these partitions are assembled in a single bracket, the partition separated is reproduced."

Examples

			For a(3) the 14 distinct combinatory separations grouped according to head are: 111<={111}, 111<={1,11}, 111<={1,1,1}; 112<={112}, 112<={1,11}, 112<={1,12}, 112<={1,1,1}; 122<={122}, 122<={1,11}, 122<={1,12}, 122<={1,1,1}; 123<={123}, 123<={1,12}, 123<={1,1,1}.
Note that in this enumeration the two multiset partitions {{1},{2,3}}:123<={1,12} and {{1,2},{3}}:123<={1,12} do not represent distinct multi-arrows and consequently are counted only once, whereas the two multiset partitions {{1},{1,2}}:112<={1,12} and {{1,2},{2}}:122<={1,12} are counted separately even though they have the same multiset of block-types.
		

Crossrefs

Cf. A255906 (multiset partitions of normal multisets of weight n), A096443 (multiset partitions of multiset class representatives), A007716 (non-isomorphic multiset partitions of weight n).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,allnorm[n]}]],{n,7}] (* Gus Wiseman, Aug 29 2018 *)

Extensions

a(9) from Gus Wiseman, Aug 29 2018
a(10) from Robert Price, Sep 14 2018
a(11)-a(21) from Martin Fuller, Mar 22 2025

A275024 Total weight of the n-th twice-prime-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 3, 2, 4, 4, 2, 3, 3, 1, 4, 3, 5, 3, 4, 3, 4, 1, 3, 2, 5, 2, 3, 2, 4, 4, 3, 4, 5, 2, 5, 4, 3, 1, 4, 4, 4, 3, 2, 3, 5, 1, 4, 3, 6, 3, 4, 3, 5, 3, 4, 2, 5, 2, 2, 5, 4, 3, 3, 1, 6, 4, 3, 4, 4, 5, 3, 2, 5, 2, 5, 2, 4, 4, 5, 4, 6, 2, 3, 4, 6, 3, 5, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2016

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-prime-factored multiset partition is constructed by factoring n into prime numbers and then factoring each prime index plus 1 into prime numbers. This produces a unique multiset of multisets of prime numbers which can then be normalized (see example) to produce each possible multiset partition as n ranges over all positive integers.

Examples

			The sequence of multiset partitions begins:
(), ((1)), ((2)), ((1)(1)), ((11)), ((1)(2)), ((3)),
((1)(1)(1)), ((2)(2)), ((1)(11)), ((12)), ((1)(1)(2)),
((4)), ((1)(3)), ((2)(11)), ((1)(1)(1)(1)), ((111)),
((1)(2)(2)), ((22)), ((1)(1)(11)), ((2)(3)), ((1)(12)),
((13)), ((1)(1)(1)(2)), ((11)(11)), ((1)(4)), ((2)(2)(2)),
((1)(1)(3)), ((5)), ((1)(2)(11)), ((112)), ((1)(1)(1)(1)(1)),
((2)(12)), ((1)(111)), ((3)(11)), ((1)(1)(2)(2)), ((6)), ...
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimeOmega[PrimePi[p]+1]]],{n,1,100}]

Formula

If prime(k) has weight equal to the number of prime factors (counting multiplicity) of k+1, then a(n) is the sum of weights over all prime factors (counting multiplicity) of n.

A036035 Least integer of each prime signature, in graded (reflected or not) colexicographic order of exponents.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 900, 840, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1800, 1680, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 1296, 960, 1440, 2160
Offset: 0

Views

Author

Keywords

Comments

The exponents can be read off Abramowitz and Stegun, p. 831, column labeled "pi".
Here are the partitions in the order used by Abramowitz and Stegun (graded reflected colexicographic order): 0; 1; 2, 1+1; 3, 1+2, 1+1+1; 4, 1+3, 2+2, 1+1+2, 1+1+1+1; 5, 1+4, 2+3, 1+1+3, 1+2+2, 1+1+1+2, 1+1+1+1+1; ... (Cf. A036036)
Here are the partitions in graded colexicographic order: 0; 1; 2, 1+1; 3, 2+1, 1+1+1; 4, 3+1, 2+2, 2+1+1, 1+1+1+1; 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1; ... (Cf. A036037)
Since the prime signature is a partition of Omega(n), so to speak, the internal order is only a matter of convention and has no effect on the least integer with a given prime signature.
The graded colexicographic order has the advantage that the exponents are in the same order as the least integer with a given prime signature (also used on the wiki page, see links).
Embedded values include the primorial numbers 1, 2, 6, 30, 210, 2310, 30030 ... (A002110) with unordered factorizations counted by A000110 (Bell numbers) and ordered factorizations by A000670 (ordered Bell numbers).
When viewed as a table the n-th row has partition(n) (A000041(n)) terms. - Alford Arnold, Jul 31 2003
A closely related sequence, A096443(n), gives the number of partitions of the n-th multiset. - Alford Arnold, Sep 29 2005

Examples

			1;
2;
4, 6;
8, 12, 30;
16, 24, 36, 60, 210;
32, 48, 72, 120, 180, 420, 2310;
64, 96, 144, 216, 240, 360, 900, 840, 1260, 4620, 30030;
128, 192, 288, 432, 480, 720, 1080, 1800, 1680, 2520, 6300, 9240, 13860, 60060, 510510;
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

A025487 in a different order. Cf. A035098, A002110, A000110 and A000670.

Programs

  • Maple
    with(combinat):
    A036035_row := proc(n) local e, w; w := proc(e) local i, p;
    p := [seq(ithprime(nops(e)-i+1), i=1..nops(e))];
    mul(p[i]^e[i], i=1..nops(e)) end:
    seq(w(conjpart(e)), e = partition(n)) end:
    seq(A036035_row(i), i=0..10);  # Peter Luschny, Aug 01 2013
  • Mathematica
    nmax = 52; primeSignature[n_] := Sort[ FactorInteger[n], #1[[2]] > #2[[2]] & ][[All, 2]]; ip[n_] := Reverse[ Sort[#]] & /@ Split[ Sort[ IntegerPartitions[n], Length[#1] < Length[#2] & ], Length[#1] == Length[#2] & ]; tip = Flatten[ Table[ip[n], {n, 0, 8}], 2]; a[n_] := (sig = tip[[n+1]]; k = 1; While[sig =!= primeSignature[k++]]; k-1); a[0] = 1; a[1] = 2; Table[an = a[n]; Print[an]; an, {n, 0, nmax}](* Jean-François Alcover, Nov 16 2011 *)
  • PARI
    Row(n)={[prod(i=1, #p, prime(i)^p[#p+1-i]) | p<-partitions(n)]} \\ Andrew Howroyd, Oct 19 2020

Extensions

More terms from Alford Arnold; corrected Sep 10 2002
More terms from Ray Chandler, Jul 13 2003
Definition corrected by Daniel Forgues, Jan 16 2011

A302243 Total weight of the n-th twice-odd-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 1, 2, 3, 2, 4, 2, 4, 2, 4, 1, 3, 4, 3, 1, 3, 3, 2, 3, 3, 2, 4, 1, 2, 3, 4, 4, 2, 4, 2, 3, 2, 3, 4, 3, 1, 4, 3, 3, 4, 3, 2, 2, 3, 1, 3, 5, 5, 4, 2, 2, 3, 3, 3, 5, 2, 4, 3, 2, 1, 5, 4, 2, 3, 2, 4, 5, 4, 4
Offset: 0

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-odd-factored multiset partition is constructed by factoring 2n + 1 into prime numbers and then factoring each prime index into prime numbers and taking their prime indices.

Examples

			Sequence of multiset partitions begins: (), ((1)), ((2)), ((11)), ((1)(1)), ((3)), ((12)), ((1)(2)), ((4)), ((111)), ((1)(11)), ((22)), ((2)(2)), ((1)(1)(1)), ((13)), ((5)), ((1)(3)), ((2)(11)), ((112)), ((1)(12)), ((6)).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Sum[PrimeOmega[k],{k,primeMS[2n-1]}],{n,100}]

Formula

a(n) = A302242(2n + 1).

A126442 Triangular array t read by rows: t(0,k) is p(k), the number of partitions of the k-multiset {0,0,...,0} with k zeros. For 0 <= n < k, t(n, k) is the number of partitions of the k-multiset {0, 0, ..., 0, 1, 2, 3, ..., k-n} with n zeros.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 7, 11, 15, 7, 12, 21, 36, 52, 11, 19, 38, 74, 135, 203, 15, 30, 64, 141, 296, 566, 877, 22, 45, 105, 250, 592, 1315, 2610, 4140, 30, 67, 165, 426, 1098, 2752, 6393, 13082, 21147, 42, 97, 254, 696, 1940, 5317, 13960, 33645, 70631, 115975
Offset: 1

Views

Author

Alford Arnold, Jan 28 2007

Keywords

Comments

First in a series of triangular arrays which comprise subsequences of A096443(n).
The second array begins 9 16 26 29 52 92 47 98 198 371 and when the arrays are aligned as illustrated in triangle A126441 with p(n) values they sum to A035310 which counts unordered multisets.
Let t(n, k) be the number of ways to partition the k-multiset {0,0,...,0,1,2,3,4,...,k-n} with n zeros, 0 <= n < k. Then t(n, k) = sum_i = 0..k j = 0..n S(n, j) C(i, j) p(k - n - i), where S(n, j) are Stirling numbers of the second kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function.
To see this, partition [n] into j blocks; there are S(n, j) partitions. For such a partition x and for each i, there are C(i, j) ways to distribute i zeros into x, because the blocks of x are all distinct. There are p(k-n-i) ways to partition the remaining k-n-i zeros. Multiplying and summing gives the result. - George Beck, Jan 10 2011
Values are also part of A096443, A129306 and A249620. Columns are also columns of the last one of these irregular triangles. See "Partitions_of_multisets" link. - Tilman Piesk, Nov 09 2014

Examples

			This first array includes only the hook cases. A096443(9,14,16) correspond to partitions [2,2], [3,2] and [2,2,1] so these values do not appear in A126442.
The array begins:
1
2 2
3 4 5
5 7 11 15
7 12 21 36 52
		

Crossrefs

Programs

  • Mathematica
    (* The triangle is flattened to a sequence. *)
    t[n_, k_] := Sum[StirlingS2[n, j] * Binomial[-1 + i + j, i] * PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Table[ t[n, k], {k, 10}, {n, 0, k - 1}] // Flatten (* George Beck, Jan 10 2011 *)

Extensions

Definition clarified by George Beck, Jan 11 2011

A298941 Number of permutations of the multiset of prime factors of n > 1 that are Lyndon words.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 1, 3
Offset: 2

Views

Author

Gus Wiseman, Jan 29 2018

Keywords

Examples

			The a(90) = 3 Lyndon permutations are {2,3,3,5}, {2,3,5,3}, {2,5,3,3}.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory):
    g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j,
            (l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)):
    a:= n-> g(map(i-> i[2], ifactors(n)[2])):
    seq(a(n), n=2..150);  # Alois P. Heinz, Feb 09 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Permutations[primeMS[n]],LyndonQ]],{n,2,60}]
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!);
    g[l_] := With[{n = Total[l]}, If[n == 0, 1, Sum[MoebiusMu[j] multinomial[ n/j, l/j], {j, Divisors[GCD @@ l]}]/n]];
    a[n_] := g[FactorInteger[n][[All, 2]]];
    a /@ Range[2, 150] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)

A095705 Triangular array read by rows: a(n, k) = sum of number of ordered factorizations of all prime signatures with n total prime factors and k distinct prime factors.

Original entry on oeis.org

1, 2, 3, 4, 8, 13, 8, 46, 44, 75, 16, 124, 308, 308, 541, 32, 572, 1790, 2536, 2612, 4683, 64, 1568, 8352, 17028, 24704, 25988, 47293, 128, 6728, 40628, 137498, 187928, 277456, 296564, 545835, 256, 18768, 228308, 719056, 1699184, 2356560, 3526448, 3816548, 7087261
Offset: 1

Views

Author

Alford Arnold, Jul 04 2004, Nov 22 2005

Keywords

Comments

A093936 is an analogous array for unordered factorizations.
First column is A000079. First two diagonals are A000670 and A005649.

Examples

			There are two prime signatures with 5 total primes and 3 distinct primes: p^3*q*r and p^2*q^2*r. A074206(p^3*q*r) = 132 and A074206(p^2*q^2*r) = 176, so a(5, 3) = 132+176 = 308.
Array begins:
  1
  2, 3
  4, 8, 13
  8, 46, 44, 75
  16, 124, 308, 308, 541
  32, 572, 1790, 2536, 2612, 4683
  64, 1568, 8352, 17028, 24704, 25988, 47293
  128, 6728, 40628, 137498, 187928, 277456, 296564, 545835
  256, 18768, 228308, 719056, 1699184, 2356560, 3526448, 3816548, 7087261
		

Crossrefs

A035341 gives the row sums. Cf. A050324, A074206, A093936, A096443.

Programs

  • Mathematica
    H[0] = 0; H[1] = 1; H[n_] := H[n] = Total[H /@ Most[Divisors[n]]];
    T[n_, k_] := Module[{t = IntegerPartitions[n, {k}]}, Total[H /@ Times @@@ ((Prime[Range[k]]^#) & /@ t)]];
    Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Jun 28 2025 *)

Extensions

Edited and extended by David Wasserman, Feb 22 2008
Showing 1-10 of 14 results. Next