cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A129306 Resort sequence A096443 by source partition as described by A053445 and A126442.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 7, 11, 15, 9, 7, 12, 21, 36, 52, 16, 26, 11, 19, 38, 74, 135, 203, 29, 52, 92, 31, 66, 15, 30, 64, 141, 296, 566, 877, 47, 98, 198, 371, 57, 109, 137, 249, 22, 45, 105, 250, 592, 1315, 2610, 4140, 77, 171, 392, 850, 1663, 97, 212, 444, 269, 560, 1075
Offset: 1

Views

Author

Alford Arnold, May 07 2007

Keywords

Comments

The first array is described in A126442 and is the hook case. Sequence A129305 encodes the multisets counted by A096443 and A129306.

Examples

			a(11) = 9 because 2+2= 4 starting a new array. The arrays begin as follows:
1.....2.....3.....5......7......11.....15.....22
......2.....4.....7......12.....19.....30.....45
............5.....11.....21.....38.....64.....105
..................15.....36.....74.....141....250
.........................52.....135....296....592
................................203....566....1315
.......................................877....2610
..............................................4140
..................9......16.....29.....47.....77
.........................26.....52.....98.....171
................................92.....198....392
.......................................371....850
..............................................1663
................................31.....57.....97
.......................................109....212
..............................................444
................................66.....137....269
.......................................249....560
..............................................1075
..............................................109
..............................................300
..............................................712
which sums to
1.....4....12....47....170....750....3255.....16010
		

Crossrefs

A138533 Resort the multinomial sequence A036038 by source partition as described in A126442, A129306 and A136101.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 6, 120, 60, 20, 5, 1, 30, 10, 720, 360, 120, 30, 6, 1, 180, 60, 15, 20, 90
Offset: 1

Views

Author

Alford Arnold, Mar 27 2008

Keywords

Comments

Multinomials count permutations of multisets and also paths in lattices; for example, there are six paths (from null to full) through the lattice of divisors for signature 36: 2233 2323 2332 3223 3232 and 3322.

Examples

			a(11) is six because the eleventh least prime signature in source format is 36 the signature for partition 2+2 the ninth partition and A036038(9) = 6.
The tables begin:
1.......2.......6.......24......120.....720....5040.....40320......362880
........1.......3.......12.......60.....360....2520.....20160......181440
................1.......4........20.....120.....840......6720.......60480
........................1........5.......30.....210......1680.......15120
.. ..............................1........6......42......336........3024
..........................................1.......7.......56.........504
..................................................1........8..........72
...........................................................1...........9
.......................................................................1
........................6........30.....180....1260....10080........90720
.................................10......60.....420.....3360........30240
...
		

Crossrefs

Cf. A173333. [From Reinhard Zumkeller, Feb 19 2010]

A136101 Resort sequence A025487 by source partition as described by A053445 and A126442.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 30, 16, 24, 60, 210, 36, 32, 48, 120, 420, 2310, 72, 180, 64, 96, 240, 840, 4620, 30030, 144, 360, 1260, 216, 900, 128, 192, 480, 1680, 9240, 60060, 510510, 288, 720, 2520, 13860, 432, 1080, 1800, 6300, 256, 384, 960, 3360, 18480, 120120
Offset: 0

Views

Author

Alford Arnold, Jan 01 2008

Keywords

Examples

			Let a(0) = 1 then let the irregular table begin:
2....4....8....16....32....64....
....6...12....24....48....96....
........30....60...120...240....
.............210...420...840....
..................2310..4620....
.......................30030....
..............36....72...144....
...................180...360....
........................1260....
.........................216....
.........................900....
		

Crossrefs

A000070 a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0

Views

Author

Keywords

Comments

Also the total number of all different integers in all partitions of n + 1. E.g., a(3) = 7 because the partitions of 4 comprise the sets {1},{1, 2},{2},{1, 3},{4} of different integers and their total number is 7. - Thomas Wieder, Apr 10 2004
With offset 1, also the number of 1's in all partitions of n. For example, 3 = 2+1 = 1+1+1, a(3) = (zero 1's) + (one 1's) + (three 1's), so a(3) = 4. - Naohiro Nomoto, Jan 09 2002. See the Riordan reference p. 184, last formula, first term, for a proof based on Fine's identity given in Riordan, p. 182 (20).
Also, number of partitions of n into parts when there are two kinds of parts of size one.
Also number of graphical forest partitions of 2n+2.
a(n) = count 2 for each partition of n and 1 for each decrement. E.g., the partitions of 4 are 4 (2), 31 (3), 22 (2), 211 (3) and 1111 (2). 2 + 3 + 2 + 3 + 2 = 12. This is related to the Ferrers representation. We can see that taking the Ferrers diagram for each partition of n and adding a new * to all available columns, we generate each partition of n+1, but with repeats (A058884). - Jon Perry, Feb 06 2004
Also the number of 1-transitions among all integer partitions of n. A 1-transition is the removal of a digit "1" from a partition containing at least one "1" and subsequent addition of that "1" to another digit in that partition. This other digit may be a "1" also, but all digits of equal amount are considered as undistinquishable (unlabeled). E.g., for n=6 one has the partition [1113] for which the following two 1-transitions are possible: [1113] --> [123] and [1113] --> [114]. The 1-transitions of n form a partial order (poset). For n=6 one has 12 1-transitions: [111111] --> [11112], [11112] --> [1113], [11112] --> [1122], [1113] --> [114], [1113] --> [123], [1122] --> [123], [1122] --> [222], [123] --> [33], [123] --> [24], [114] --> [15], [114] --> [24], [15] --> [6]. - Thomas Wieder, Mar 08 2005
Also number of partitions of 2n+1 where one of the parts is greater than n (also where there are more than n parts) and of 2n+2 where one of the parts is greater than n+1 (or with more than n+1 parts). - Henry Bottomley, Aug 01 2005
Equals left border of triangle A137633 - Gary W. Adamson, Jan 31 2008
Equals row sums of triangle A027293. - Gary W. Adamson, Oct 26 2008
Convolved with A010815 = [1,1,1,...]. n-th partial sum of A000041 convolved with A010815 = the binomial sequence starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
Equals A036469 convolved with A035363. - Gary W. Adamson, Jun 09 2009
a(A004526(n)) = A025065(n). - Reinhard Zumkeller, Jan 23 2010
a(n) = if n <= 1 then A054225(1,n) else A054225(n,1). - Reinhard Zumkeller, Nov 30 2011
Also the total number of 1's among all hook-lengths in all partitions of n. E.g., a(4)=7 because hooks of the partitions of n = 4 comprise the multisets {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} and their total number of 1's is 7. - T. Amdeberhan, Jun 03 2012
With offset 1, a(n) is also the difference between the sum of largest and the sum of second largest elements in all partitions of n. More generally, the number of occurrences of k in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+1)st largest elements in all partitions of n. And more generally, the sum of the number of occurrences of k, k+1, k+2..k+m in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+m+1)st largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
a(0) = 1 and 2*a(n-1) >= a(n) for all n > 0. Hence a(n) is a complete sequence. - Frank M Jackson, Apr 08 2013
a(n) is the number of conjugacy classes in the order-preserving, order-decreasing and (order-preserving and order-decreasing) injective transformation semigroups. - Ugbene Ifeanyichukwu, Jun 03 2015
a(n) is also the number of unlabeled subgraphs of the n-cycle C_n. For example, for n = 3, there are 3 unlabeled subgraphs of the triangle C_3 with 0 edges, 2 with 1 edge, 1 with 2 edges, and 1 with 3 edges (C_3 itself), so a(3) = 3 + 2 + 1 + 1 = 7. - John P. McSorley, Nov 21 2016
a(n) is also the number of partitions of 2n with all parts either even or equal to 1. Proof: the number of such partitions of 2n with exactly 2k 1's is p(n-k), for k = 0,..,n. Summing over k gives the formula. - Leonard Chastkofsky, Jul 24 2018
a(n) is the total number of polygamma functions that appear in the expansion of the (n+1)st derivative of x! with respect to x. More specifically, a(n) is the number of times the string "PolyGamma" appears in the expansion of D[x!, {x, n + 1}] in Mathematica. For example, D[x!, {x, 3 + 1}] = Gamma[1 + x] PolyGamma[0, 1 + x]^4 + 6 Gamma[1 + x] PolyGamma[0, 1 + x]^2 PolyGamma[1, 1 + x] + 3 Gamma[1 + x] PolyGamma[1, 1 + x]^2 + 4 Gamma[1 + x] PolyGamma[0, 1 + x] PolyGamma[2, 1 + x] + Gamma[1 + x] PolyGamma[3, 1 + x], and we see that the string "PolyGamma" appears a total of a(3) = 7 times in this expansion. - John M. Campbell, Aug 11 2018
With offset 1, also the number of integer partitions of 2n that do not comprise the multiset of vertex-degrees of any multigraph (i.e., non-multigraphical partitions); see A209816 for multigraphical partitions. - Gus Wiseman, Oct 26 2018
Also a(n) is the number of partitions of 2n+1 with exactly one odd part.
Delete the odd part 2k+1, k=0, ..., n, to get a partition of 2n-2k into even parts. There are as many unrestricted partitions of n-k; now sum those numbers from 0 to n to get a(n). - George Beck, Jul 22 2019
In the Young's lattice, a(n) is the number of branches that connect the (n-1)-th layer to the n-th layer. - Shouvik Datta, Sep 19 2021
a(n) is the number of multiset partitions of the multiset {r^n, s^1}, equivalently, factorization patterns of any number m=p^n*q^1 where p and q are primes. - Joerg Arndt, Jan 01 2024
a(n) is the number of positive integers whose divisors are the parts of the partitions of n + 1. - Omar E. Pol, Nov 07 2024

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
.                         Number
Partitions of 6           of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 =                     19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
  (2)  (4)   (6)    (8)     (A)      (C)
       (31)  (42)   (53)    (64)     (75)
             (51)   (62)    (73)     (84)
             (411)  (71)    (82)     (93)
                    (521)   (91)     (A2)
                    (611)   (622)    (B1)
                    (5111)  (631)    (732)
                            (721)    (741)
                            (811)    (822)
                            (6211)   (831)
                            (7111)   (921)
                            (61111)  (A11)
                                     (7221)
                                     (7311)
                                     (8211)
                                     (9111)
                                     (72111)
                                     (81111)
                                     (711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
  (11)  (211)   (2211)    (22211)     (222211)      (2222211)
        (1111)  (3111)    (32111)     (322111)      (3222111)
                (21111)   (41111)     (331111)      (3321111)
                (111111)  (221111)    (421111)      (4221111)
                          (311111)    (511111)      (4311111)
                          (2111111)   (2221111)     (5211111)
                          (11111111)  (3211111)     (6111111)
                                      (4111111)     (22221111)
                                      (22111111)    (32211111)
                                      (31111111)    (33111111)
                                      (211111111)   (42111111)
                                      (1111111111)  (51111111)
                                                    (222111111)
                                                    (321111111)
                                                    (411111111)
                                                    (2211111111)
                                                    (3111111111)
                                                    (21111111111)
                                                    (111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
   1:  {{1, 1, 1, 1, 1, 2}}
   2:  {{1, 1, 1, 1, 1}, {2}}
   3:  {{1, 1, 1, 1, 2}, {1}}
   4:  {{1, 1, 1, 1}, {1, 2}}
   5:  {{1, 1, 1, 1}, {1}, {2}}
   6:  {{1, 1, 1, 2}, {1, 1}}
   7:  {{1, 1, 1, 2}, {1}, {1}}
   8:  {{1, 1, 1}, {1, 1, 2}}
   9:  {{1, 1, 1}, {1, 1}, {2}}
  10:  {{1, 1, 1}, {1, 2}, {1}}
  11:  {{1, 1, 1}, {1}, {1}, {2}}
  12:  {{1, 1, 2}, {1, 1}, {1}}
  13:  {{1, 1, 2}, {1}, {1}, {1}}
  14:  {{1, 1}, {1, 1}, {1, 2}}
  15:  {{1, 1}, {1, 1}, {1}, {2}}
  16:  {{1, 1}, {1, 2}, {1}, {1}}
  17:  {{1, 1}, {1}, {1}, {1}, {2}}
  18:  {{1, 2}, {1}, {1}, {1}, {1}}
  19:  {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
		

References

  • H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.

Crossrefs

A diagonal of A066633.
Also second column of A126442. - George Beck, May 07 2011
Row sums of triangle A092905.
Also row sums of triangle A261555. - Omar E. Pol, Sep 14 2016
Also row sums of triangle A278427. - John P. McSorley, Nov 25 2016
Column k=2 of A292508.

Programs

  • GAP
    List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
    
  • Haskell
    a000070 = p a028310_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Maple
    with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
    Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
    Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
    a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
    Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
    
  • PARI
    x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
    
  • PARI
    a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
    
  • Python
    from itertools import accumulate
    def A000070iter(n):
        L = [0]*n; L[0] = 1
        def numpart(n):
            S = 0; J = n-1; k = 2
            while 0 <= J:
                T = L[J]
                S = S+T if (k//2)%2 else S-T
                J -= k  if (k)%2 else k//2
                k += 1
            return S
        for j in range(1, n): L[j] = numpart(j)
        return accumulate(L)
    print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
    
  • Python
    # Using function A365676Row. Compare also A365675.
    from itertools import accumulate
    def A000070List(size: int) -> list[int]:
        return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
    print(A000070List(45))  # Peter Luschny, Sep 16 2023
  • Sage
    def A000070_list(leng):
        p = [number_of_partitions(n) for n in range(leng)]
        return [add(p[:k+1]) for k in range(leng)]
    A000070_list(45) # Peter Luschny, Sep 15 2014
    

Formula

Euler transform of [ 2, 1, 1, 1, 1, 1, 1, ...].
log(a(n)) ~ -3.3959 + 2.44613*sqrt(n). - Robert G. Wilson v, Jan 11 2002
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)+1)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
G.f.: (1/(1 - x))*Product_{m >= 1} 1/(1 - x^m).
a(n) seems to have the same parity as A027349(n+1). Comment from James Sellers, Mar 08 2006: that is true.
a(n) = A000041(2n+1) - A110618(2n+1) = A000041(2n+2) - A110618(2n+2). - Henry Bottomley, Aug 01 2005
Row sums of triangle A133735. - Gary W. Adamson, Sep 22 2007
a(n) = A092269(n+1) - A195820(n+1). - Omar E. Pol, Oct 20 2011
a(n) = A181187(n+1,1) - A181187(n+1,2). - Omar E. Pol, Oct 25 2012
From Peter Bala, Dec 23 2013: (Start)
Gupta gives the asymptotic result a(n-1) ~ sqrt(6/Pi^2)* sqrt(n)*p(n), where p(n) is the partition function A000041(n).
Let P(2,n) denote the set of partitions of n into parts k >= 2.
a(n-2) = Sum_{parts k in all partitions in P(2,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, leads to the asymptotic result
a(n-2) ~ (6/Pi^2)*n*(p(n) - p(n-1)) = (6/Pi^2)*A138880(n) as n -> infinity. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n)) + (73*Pi^2 - 1584)/(6912*n)). - Vaclav Kotesovec, Oct 26 2016
a(n) = A024786(n+2) + A024786(n+1). - Vaclav Kotesovec, Nov 05 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(n) = A025065(2n). - Gus Wiseman, Oct 26 2018
a(n - 1) = A000041(2n) - A209816(n). - Gus Wiseman, Oct 26 2018

A014153 Expansion of 1/((1-x)^2*Product_{k>=1} (1-x^k)).

Original entry on oeis.org

1, 3, 7, 14, 26, 45, 75, 120, 187, 284, 423, 618, 890, 1263, 1771, 2455, 3370, 4582, 6179, 8266, 10980, 14486, 18994, 24757, 32095, 41391, 53123, 67865, 86325, 109350, 137979, 173450, 217270, 271233, 337506, 418662, 517795, 638565, 785350, 963320, 1178628
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n with three kinds of 1. E.g., a(2)=7 because we have 2, 1+1, 1+1', 1+1", 1'+1', 1'+1", 1"+1". - Emeric Deutsch, Mar 22 2005
Partial sums of the partial sums of the partition numbers A000041. Partial sums of A000070. Euler transform of 3,1,1,1,...
Also sum of parts, counted without multiplicity, in all partitions of n, offset 1. Also Sum phi(p), where the sum is taken over all parts p of all partitions of n, offset 1. - Vladeta Jovovic, Mar 26 2005
Equals row sums of triangle A141157. - Gary W. Adamson, Jun 12 2008
A014153 convolved with A010815 = (1, 2, 3, ...). n-th partial sum sequence of A000041 convolved with A010815 = (n-1)-th column of Pascal's triangle, starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
From Omar E. Pol, May 25 2012: (Start)
a(n) is also the sum of all parts of the (n+1)st column of a version of the section model of partitions in which every section has its parts aligned to the right margin (cf. A210953, A210970, A135010).
Rows of triangle A210952 converge to this sequence. (End)
Using the above result (see Jovovic's comment) of Jovovic and Mertens's theorem on the average order of the phi function, we can obtain the estimate a(n-1) = (6/Pi^2)*n*p(n) + O(log(n)*A006128(n)), where p(n) is the partition function A000041(n). It can be shown that A006128(n) = O(sqrt(n)*log(n)*p(n)), so we have the asymptotic result a(n) ~ (6/Pi^2)*n*p(n). - Peter Bala, Dec 23 2013
a(n-2) is the number of partitions of 2n or 2n-1 with palindromicity 2; that is, partitions that can be listed in palindromic order except for a central sequence of two distinct parts. - Gregory L. Simay, Nov 01 2015
Convolution of A000041 and A000027. - Omar E. Pol, Jun 17 2021
Convolution of A002865 and the positive terms of A000217. Partial sums give A014160. - Omar E. Pol, Mar 01 2023

Crossrefs

Cf. A010815. - Gary W. Adamson, Nov 09 2008
Column k=3 of A292508.

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x)^2*(&*[1-x^k: k in [1..50]])) )); // G. C. Greubel, Oct 15 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add((2+sigma(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 13 2012
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[(2+DivisorSigma[1, j])*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[Sum[(n-k)*PartitionsP[k],{k,0,n}],{n,1,50}] (* Vaclav Kotesovec, Jun 23 2015 *)
    t[n_, k_] := Sum[StirlingS1[n, j]* Binomial[i + j - 1, i]* PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Print@ Table[t[n, k], {k, 10}, {n, 0, k - 1}]; Table[t[2, k], {k, 3, 43}] (* George Beck, May 25 2016 *)
  • PARI
    x='x+O('x^45); Vec(1/((1-x)^2*prod(k=1,50, 1-x^k))) \\ G. C. Greubel, Oct 15 2018

Formula

Let t(n_, k_) = Sum_{i = 0..k} Sum_{j = 0..n} s(n, j)*C(i, j)*p(k - n - i), where s(n, j) are Stirling numbers of the first kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function. Then a(k) = t(2, k+2) (conjectured). The formula for t(n, k) is the same as at A126442 except that there the Stirling numbers are of the second kind. - George Beck, May 21 2016
a(n) = (n+1)*A000070(n+1) - A182738(n+1). - Vaclav Kotesovec, Nov 04 2016
a(n) ~ exp(sqrt(2*n/3)*Pi)*sqrt(3)/(2*Pi^2) * (1 + 23*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 04 2016

A346426 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 4, 3, 15, 15, 11, 7, 5, 52, 52, 36, 21, 12, 7, 203, 203, 135, 74, 38, 19, 11, 877, 877, 566, 296, 141, 64, 30, 15, 4140, 4140, 2610, 1315, 592, 250, 105, 45, 22, 21147, 21147, 13082, 6393, 2752, 1098, 426, 165, 67, 30, 115975, 115975, 70631, 33645, 13960, 5317, 1940, 696, 254, 97, 42
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2021

Keywords

Comments

Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1); A(3,1) = 7: 2*2*2*3, 2*3*4, 4*6, 2*2*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30.

Examples

			A(2,2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
Square array A(n,k) begins:
   1,  1,   2,    5,   15,    52,    203,     877,    4140, ...
   1,  2,   5,   15,   52,   203,    877,    4140,   21147, ...
   2,  4,  11,   36,  135,   566,   2610,   13082,   70631, ...
   3,  7,  21,   74,  296,  1315,   6393,   33645,  190085, ...
   5, 12,  38,  141,  592,  2752,  13960,   76464,  448603, ...
   7, 19,  64,  250, 1098,  5317,  28009,  158926,  963913, ...
  11, 30, 105,  426, 1940,  9722,  52902,  309546, 1933171, ...
  15, 45, 165,  696, 3281, 16972,  95129,  572402, 3670878, ...
  22, 67, 254, 1106, 5372, 28582, 164528, 1015356, 6670707, ...
  ...
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= proc(n, k) option remember; coeff(s(n), x, k) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
          combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
        end:
    A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    s[n_] := s[n] = Expand[If[n == 0, 1, x Sum[s[n - j] Binomial[n - 1, j - 1], {j, 1, n}]]];
    S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
    A[n_, k_] := Sum[S[k, j] b[n, j], {j, 0, k}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz *)

Formula

A(n,k) = A001055(A000079(n)*A070826(k+1)).
A(n,k) = Sum_{j=0..k} A048993(k,j)*A292508(n,j+1).
A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000041(n-i).

A082775 Convolution of natural numbers >= 2 and the partition numbers (A000041).

Original entry on oeis.org

2, 5, 11, 21, 38, 64, 105, 165, 254, 381, 562, 813, 1162, 1636, 2279, 3139, 4285, 5794, 7776, 10353, 13694, 17992, 23502, 30520, 39433, 50687, 64855, 82607, 104785, 132375, 166608, 208921, 261090, 325196, 403779, 499818, 616928, 759335, 932135
Offset: 2

Views

Author

Alford Arnold, May 22 2003

Keywords

Comments

Contribution from George Beck, Jan 08 2011: (Start)
The number of multiset partitions of the n-multiset M={0,0,...,0,1,2} (with n-2 zeros) is sum_{k=0..(n-2)}( (n-k) * p(k) ) where p(k) is the number of partitions of k.
Proof:
For each k = 0, 1, ..., n-2, partition k zeros and add the remaining n-k-2 zeros to the block {1, 2}, to give p(k) partitions.
For each k, partition k zeros and add the remaining n-k-2 zeros to the two blocks {1} and {2} in all possible 1 + n-k-2 ways, which gives (1 + n-k-2) * p(k) partitions.
Together, the number of partitions of M is sum_{k=0..n-2}( (n-k) * p(k) ). (End)
A082775 is the special case of A126442 with n-k = 2.

Examples

			a(7) = 64 because (7,5,3,2,1,1) dot (2,3,4,5,6,7) = 14+15+12+10+6+7= 64.
		

Crossrefs

Column k=2 of A346426.

Programs

  • Mathematica
    f[n_] := Sum[(n - k) PartitionsP[k], {k, 0, n - 2}]; Array[f, 39, 2]

Formula

a(n) = a(n-1) + A000041(n) + A000070(n) for n>1. - Alford Arnold, Dec 10 2007
a(n) = n*A000070(n-2) - A182738(n-2) for n>2. - Vaclav Kotesovec, Jun 23 2015
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - Vaclav Kotesovec, Jun 23 2015

Extensions

More terms from Ray Chandler, Oct 11 2003

A249620 Triangle read by rows: T(m,n) = number of partitions of the multiset with m elements and signature corresponding to n-th integer partition (A194602).

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 3, 15, 11, 7, 9, 5, 52, 36, 21, 26, 12, 16, 7, 203, 135, 74, 92, 38, 52, 19, 66, 29, 31, 11, 877, 566, 296, 371, 141, 198, 64, 249, 98, 109, 30, 137, 47, 57, 15, 4140, 2610, 1315, 1663, 592, 850, 250, 1075, 392, 444, 105, 560
Offset: 0

Views

Author

Tilman Piesk, Nov 04 2014

Keywords

Comments

This triangle shows the same numbers in each row as A129306 and A096443, but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A035310
Columns: 0: A000110 (Bell), 1: A035098 (near-Bell), 2: A169587, 4: A169588
Last in row: end-1: A091437, end: A000041 (partition numbers)
The rightmost columns form a reflected version of the triangle A126442:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 2
3 5 4 3
4 15 11 7 5
5 52 36 21 12 7
6 203 135 74 38 19 11
7 877 566 296 141 64 30 15
8 4140 2610 1315 592 250 105 45 22
A249619 shows the number of permutations of the same multisets.

Examples

			See "The T(5,2)=21 partitions of {1,1,1,2,3}" link. Similar links for m=1..8 are in "Partitions of multisets" (Wikiversity).
Triangle begins:
  n     0    1   2   3   4   5   6   7   8   9  10
m
0       1
1       1
2       2    2
3       5    4   3
4      15   11   7   9   5
5      52   36  21  26  12  16   7
6     203  135  74  92  38  52  19  66  29  31  11
		

Crossrefs

A093802 Number of distinct factorizations of 105*2^n.

Original entry on oeis.org

5, 15, 36, 74, 141, 250, 426, 696, 1106, 1711, 2593, 3852, 5635, 8118, 11548, 16231, 22577, 31092, 42447, 57464, 77213, 103009, 136529, 179830, 235514, 306751, 397506, 512607, 658030, 841020, 1070490, 1357195, 1714274, 2157539, 2706174, 3383187, 4216358
Offset: 0

Views

Author

Alford Arnold, May 19 2004

Keywords

Examples

			105*A000079 is 105, 210, 420, 840, 1680, 3360, ... and there are 15 distinct factorizations of 210 so a(1) = 15.
a(0) = 5: 105*2^0 = 105 = 3*5*7 = 3*35 = 5*21 = 7*15. - _Alois P. Heinz_, May 26 2013
		

Crossrefs

Similar sequences: 45*A000079 => A002763, [1, 3, 9, 27, 81, 243...]*A000079 => A054225, 1*A002110 => A000110, 2*A002110 => A035098, A000142 => A076716.
Column k=3 of A346426.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b((105*2^n)$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0,
         Sum[If[d > k, 0, b[n/d, d]], {d, Divisors[n][[2;;-2]]}]];
    a[n_] := b[105*2^n, 105*2^n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)

Extensions

2 more terms from Alford Arnold, Aug 29 2007
Corrected offset and extended beyond a(7) by Alois P. Heinz, May 26 2013
Showing 1-9 of 9 results.