cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A302242 Total weight of the n-th multiset multisystem. Totally additive with a(prime(n)) = Omega(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 2, 1, 3, 2, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 3, 1, 4, 0, 3, 2, 1, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 2, 3, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets of positive integers. The n-th multiset multisystem is constructed by factoring n into prime numbers and then factoring each prime index into prime numbers and taking their prime indices. This produces a unique multiset multisystem for each n, and every possible multiset multisystem is so constructed as n ranges over all positive integers.

Examples

			Sequence of finite multisets of finite multisets of positive integers begins: (), (()), ((1)), (()()), ((2)), (()(1)), ((11)), (()()()), ((1)(1)), (()(2)), ((3)), (()()(1)), ((12)), (()(11)), ((1)(2)), (()()()()), ((4)), (()(1)(1)), ((111)), (()()(2)).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(j[2], j=ifactors(pi(i[1]))[2])*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 07 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[PrimeOmega/@primeMS[n]],{n,100}]
  • PARI
    a(n,f=factor(n))=sum(i=1,#f~, bigomega(primepi(f[i,1]))*f[i,2]) \\ Charles R Greathouse IV, Nov 10 2021

A275024 Total weight of the n-th twice-prime-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 3, 2, 4, 4, 2, 3, 3, 1, 4, 3, 5, 3, 4, 3, 4, 1, 3, 2, 5, 2, 3, 2, 4, 4, 3, 4, 5, 2, 5, 4, 3, 1, 4, 4, 4, 3, 2, 3, 5, 1, 4, 3, 6, 3, 4, 3, 5, 3, 4, 2, 5, 2, 2, 5, 4, 3, 3, 1, 6, 4, 3, 4, 4, 5, 3, 2, 5, 2, 5, 2, 4, 4, 5, 4, 6, 2, 3, 4, 6, 3, 5, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2016

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-prime-factored multiset partition is constructed by factoring n into prime numbers and then factoring each prime index plus 1 into prime numbers. This produces a unique multiset of multisets of prime numbers which can then be normalized (see example) to produce each possible multiset partition as n ranges over all positive integers.

Examples

			The sequence of multiset partitions begins:
(), ((1)), ((2)), ((1)(1)), ((11)), ((1)(2)), ((3)),
((1)(1)(1)), ((2)(2)), ((1)(11)), ((12)), ((1)(1)(2)),
((4)), ((1)(3)), ((2)(11)), ((1)(1)(1)(1)), ((111)),
((1)(2)(2)), ((22)), ((1)(1)(11)), ((2)(3)), ((1)(12)),
((13)), ((1)(1)(1)(2)), ((11)(11)), ((1)(4)), ((2)(2)(2)),
((1)(1)(3)), ((5)), ((1)(2)(11)), ((112)), ((1)(1)(1)(1)(1)),
((2)(12)), ((1)(111)), ((3)(11)), ((1)(1)(2)(2)), ((6)), ...
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimeOmega[PrimePi[p]+1]]],{n,1,100}]

Formula

If prime(k) has weight equal to the number of prime factors (counting multiplicity) of k+1, then a(n) is the sum of weights over all prime factors (counting multiplicity) of n.

A302243 Total weight of the n-th twice-odd-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 1, 2, 3, 2, 4, 2, 4, 2, 4, 1, 3, 4, 3, 1, 3, 3, 2, 3, 3, 2, 4, 1, 2, 3, 4, 4, 2, 4, 2, 3, 2, 3, 4, 3, 1, 4, 3, 3, 4, 3, 2, 2, 3, 1, 3, 5, 5, 4, 2, 2, 3, 3, 3, 5, 2, 4, 3, 2, 1, 5, 4, 2, 3, 2, 4, 5, 4, 4
Offset: 0

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-odd-factored multiset partition is constructed by factoring 2n + 1 into prime numbers and then factoring each prime index into prime numbers and taking their prime indices.

Examples

			Sequence of multiset partitions begins: (), ((1)), ((2)), ((11)), ((1)(1)), ((3)), ((12)), ((1)(2)), ((4)), ((111)), ((1)(11)), ((22)), ((2)(2)), ((1)(1)(1)), ((13)), ((5)), ((1)(3)), ((2)(11)), ((112)), ((1)(12)), ((6)).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Sum[PrimeOmega[k],{k,primeMS[2n-1]}],{n,100}]

Formula

a(n) = A302242(2n + 1).

A126442 Triangular array t read by rows: t(0,k) is p(k), the number of partitions of the k-multiset {0,0,...,0} with k zeros. For 0 <= n < k, t(n, k) is the number of partitions of the k-multiset {0, 0, ..., 0, 1, 2, 3, ..., k-n} with n zeros.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 7, 11, 15, 7, 12, 21, 36, 52, 11, 19, 38, 74, 135, 203, 15, 30, 64, 141, 296, 566, 877, 22, 45, 105, 250, 592, 1315, 2610, 4140, 30, 67, 165, 426, 1098, 2752, 6393, 13082, 21147, 42, 97, 254, 696, 1940, 5317, 13960, 33645, 70631, 115975
Offset: 1

Views

Author

Alford Arnold, Jan 28 2007

Keywords

Comments

First in a series of triangular arrays which comprise subsequences of A096443(n).
The second array begins 9 16 26 29 52 92 47 98 198 371 and when the arrays are aligned as illustrated in triangle A126441 with p(n) values they sum to A035310 which counts unordered multisets.
Let t(n, k) be the number of ways to partition the k-multiset {0,0,...,0,1,2,3,4,...,k-n} with n zeros, 0 <= n < k. Then t(n, k) = sum_i = 0..k j = 0..n S(n, j) C(i, j) p(k - n - i), where S(n, j) are Stirling numbers of the second kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function.
To see this, partition [n] into j blocks; there are S(n, j) partitions. For such a partition x and for each i, there are C(i, j) ways to distribute i zeros into x, because the blocks of x are all distinct. There are p(k-n-i) ways to partition the remaining k-n-i zeros. Multiplying and summing gives the result. - George Beck, Jan 10 2011
Values are also part of A096443, A129306 and A249620. Columns are also columns of the last one of these irregular triangles. See "Partitions_of_multisets" link. - Tilman Piesk, Nov 09 2014

Examples

			This first array includes only the hook cases. A096443(9,14,16) correspond to partitions [2,2], [3,2] and [2,2,1] so these values do not appear in A126442.
The array begins:
1
2 2
3 4 5
5 7 11 15
7 12 21 36 52
		

Crossrefs

Programs

  • Mathematica
    (* The triangle is flattened to a sequence. *)
    t[n_, k_] := Sum[StirlingS2[n, j] * Binomial[-1 + i + j, i] * PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Table[ t[n, k], {k, 10}, {n, 0, k - 1}] // Flatten (* George Beck, Jan 10 2011 *)

Extensions

Definition clarified by George Beck, Jan 11 2011

A249619 Triangle T(m,n) = number of permutations of a multiset with m elements and signature corresponding to n-th integer partition (A194602).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 24, 12, 4, 6, 1, 120, 60, 20, 30, 5, 10, 1, 720, 360, 120, 180, 30, 60, 6, 90, 15, 20, 1, 5040, 2520, 840, 1260, 210, 420, 42, 630, 105, 140, 7, 210, 21, 35, 1, 40320, 20160, 6720, 10080, 1680, 3360, 336, 5040, 840, 1120, 56
Offset: 0

Views

Author

Tilman Piesk, Nov 04 2014

Keywords

Comments

This triangle shows the same numbers in each row as A036038 and A078760 (the multinomial coefficients), but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A005651
Columns: 0: A000142 (factorials), 1: A001710, 2: A001715, 3: A133799, 4: A001720, 6: A001725, 10: A001730, 14: A049388
Last in row: end-2: A037955 after 1 term mismatch, end-1: A001405, end: A000012
The rightmost columns form the triangle A173333:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 1
3 6 3 1
4 24 12 4 1
5 120 60 20 5 1
6 720 360 120 30 6 1
7 5040 2520 840 210 42 7 1
8 40320 20160 6720 1680 336 56 8 1
A249620 shows the number of partitions of the same multisets. A187783 shows the number of permutations of special multisets.

Examples

			Triangle begins:
  n     0    1    2    3   4   5  6   7   8   9 10
m
0       1
1       1
2       2    1
3       6    3    1
4      24   12    4    6   1
5     120   60   20   30   5  10  1
6     720  360  120  180  30  60  6  90  15  20  1
		

Crossrefs

Showing 1-5 of 5 results.