cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A302242 Total weight of the n-th multiset multisystem. Totally additive with a(prime(n)) = Omega(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 2, 1, 3, 2, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 3, 1, 4, 0, 3, 2, 1, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 2, 3, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets of positive integers. The n-th multiset multisystem is constructed by factoring n into prime numbers and then factoring each prime index into prime numbers and taking their prime indices. This produces a unique multiset multisystem for each n, and every possible multiset multisystem is so constructed as n ranges over all positive integers.

Examples

			Sequence of finite multisets of finite multisets of positive integers begins: (), (()), ((1)), (()()), ((2)), (()(1)), ((11)), (()()()), ((1)(1)), (()(2)), ((3)), (()()(1)), ((12)), (()(11)), ((1)(2)), (()()()()), ((4)), (()(1)(1)), ((111)), (()()(2)).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(j[2], j=ifactors(pi(i[1]))[2])*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 07 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[PrimeOmega/@primeMS[n]],{n,100}]
  • PARI
    a(n,f=factor(n))=sum(i=1,#f~, bigomega(primepi(f[i,1]))*f[i,2]) \\ Charles R Greathouse IV, Nov 10 2021

A302478 Products of prime numbers of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01:  {}
02:  {{}}
03:  {{1}}
04:  {{},{}}
05:  {{2}}
06:  {{},{1}}
08:  {{},{},{}}
09:  {{1},{1}}
10:  {{},{2}}
11:  {{3}}
12:  {{},{},{1}}
13:  {{1,2}}
15:  {{1},{2}}
16:  {{},{},{},{}}
17:  {{4}}
18:  {{},{1},{1}}
20:  {{},{},{2}}
22:  {{},{3}}
24:  {{},{},{},{1}}
25:  {{2},{2}}
26:  {{},{1,2}}
27:  {{1},{1},{1}}
29:  {{1,3}}
30:  {{},{1},{2}}
31:  {{5}}
32:  {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    ok(n)={!#select(p->!issquarefree(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

A302494 Products of distinct primes of squarefree index.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 39, 41, 43, 47, 51, 55, 58, 59, 62, 65, 66, 67, 73, 78, 79, 82, 83, 85, 86, 87, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 129, 130, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
39: {{1},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    is(n) = if(bigomega(n)!=omega(n), return(0), my(f=factor(n)[, 1]~); for(k=1, #f, if(!issquarefree(primepi(f[k])) && primepi(f[k])!=1, return(0)))); 1 \\ Felix Fröhlich, Apr 10 2018

A302505 Numbers whose prime indices are squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 20, 22, 24, 26, 29, 30, 31, 32, 33, 34, 40, 41, 43, 44, 47, 48, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 68, 73, 79, 80, 82, 83, 85, 86, 88, 93, 94, 96, 101, 102, 104, 109, 110, 113, 116, 118, 120, 123, 124, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
13: {{1,2}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Join@@primeMS/@primeMS[#]&]

A302590 Squarefree numbers whose prime indices are prime numbers.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 31, 33, 41, 51, 55, 59, 67, 83, 85, 93, 109, 123, 127, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 241, 249, 255, 277, 283, 295, 327, 331, 335, 341, 353, 367, 381, 401, 415, 431, 451, 461, 465, 471, 509, 527, 537, 545, 547, 561, 563
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
From David A. Corneth, Feb 05 2021: (Start)
Product_{p in A006450} (p + 1)/p where primepi(p) <= 10^k for k = 3..9 respectively is
2.3221793975627545730894469494385382768...
2.3962097386916566795581118542505513350...
2.4423525010102788492232765893521739629...
2.4739349879225654126399615785205666552...
2.4969363158706022367680967716958174889...
2.5144436325229538304870684054018856517...
2.5282263225826916578696019016723107071... (End)

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
001: {}
003: {{1}}
005: {{2}}
011: {{3}}
015: {{1},{2}}
017: {{4}}
031: {{5}}
033: {{1},{3}}
041: {{6}}
051: {{1},{4}}
055: {{2},{3}}
059: {{7}}
067: {{8}}
083: {{9}}
085: {{2},{4}}
093: {{1},{5}}
109: {{10}}
123: {{1},{6}}
127: {{11}}
155: {{2},{5}}
157: {{12}}
165: {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[600],SquareFreeQ[#]&&And@@PrimeQ/@primeMS[#]&]
  • PARI
    ok(n)={issquarefree(n) && !#select(p->!isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Intersection of A005117 and A076610.
Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A302540 Numbers whose prime indices other than 1 are prime numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 34, 36, 40, 41, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 64, 66, 67, 68, 72, 75, 80, 81, 82, 83, 85, 88, 90, 93, 96, 99, 100, 102, 108, 109, 110, 118, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    Select[Range[400],#===1||And@@(#===1||PrimeQ[#]&)/@PrimePi/@FactorInteger[#][[All,1]]&]
  • PARI
    ok(n)={!#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Sum_{n>=1} 1/a(n) = 2 * Sum_{n>=1} 1/A076610(n) = 2 * Product_{p in A006450} p/(p-1) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A302492 Products of any power of 2 with prime numbers of prime-power index, i.e., prime numbers p of the form p = prime(q^k), for q prime, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 72, 75, 76, 77, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,And@@PrimePowerQ/@PrimePi/@DeleteCases[FactorInteger[#][[All,1]],2]]&]
  • PARI
    ok(n)={!#select(p->p<>2&&!isprimepower(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

A318995 Totally additive with a(prime(n)) = n - 1.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 0, 2, 2, 4, 1, 5, 3, 3, 0, 6, 2, 7, 2, 4, 4, 8, 1, 4, 5, 3, 3, 9, 3, 10, 0, 5, 6, 5, 2, 11, 7, 6, 2, 12, 4, 13, 4, 4, 8, 14, 1, 6, 4, 7, 5, 15, 3, 6, 3, 8, 9, 16, 3, 17, 10, 5, 0, 7, 5, 18, 6, 9, 5, 19, 2, 20, 11, 5, 7, 7, 6, 21, 2, 4, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add((-1+numtheory[pi](i[1]))*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 07 2018
  • Mathematica
    Table[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>(PrimePi[p]-1)*k]//Total,{n,200}]
  • PARI
    a(n)={my(f=factor(n)); sum(i=1, #f~, my([p, e]=f[i, ]); (primepi(p)-1)*e)} \\ Andrew Howroyd, Sep 07 2018

A358334 Number of twice-partitions of n into odd-length partitions.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 43, 77, 137, 241, 410, 720, 1209, 2073, 3498, 5883, 9768, 16413, 26978, 44741, 73460, 120462, 196066, 320389, 518118, 839325, 1353283, 2178764, 3490105, 5597982, 8922963, 14228404, 22609823, 35875313, 56756240, 89761600, 141410896, 222675765
Offset: 0

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(0) = 1 through a(5) = 13 twice-partitions:
  ()  ((1))  ((2))     ((3))        ((4))           ((5))
             ((1)(1))  ((111))      ((211))         ((221))
                       ((2)(1))     ((2)(2))        ((311))
                       ((1)(1)(1))  ((3)(1))        ((3)(2))
                                    ((111)(1))      ((4)(1))
                                    ((2)(1)(1))     ((11111))
                                    ((1)(1)(1)(1))  ((111)(2))
                                                    ((211)(1))
                                                    ((2)(2)(1))
                                                    ((3)(1)(1))
                                                    ((111)(1)(1))
                                                    ((2)(1)(1)(1))
                                                    ((1)(1)(1)(1)(1))
		

Crossrefs

For multiset partitions of integer partitions: A356932, ranked by A356935.
For odd length instead of lengths we have A358824.
For odd sums instead of lengths we have A358825.
For odd sums also we have A358827.
For odd length also we have A358834.
A000041 counts integer partitions.
A027193 counts odd-length partitions, ranked by A026424.
A055922 counts partitions with odd multiplicities, also odd parts A117958.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1), -(n+1))} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - A027193(k)*x^k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2022

A302593 Numbers whose prime indices are powers of a common prime number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 64, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
31: {{5}}
32: {{},{},{},{},{}}
34: {{},{4}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
40: {{},{},{},{2}}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,q;
      uses numtheory;
      F:= map(pi, factorset(n));
      nops(`union`(op(map(factorset,F)))) <= 1
    end proc:
    select(filter, [$1..200]); # Robert Israel, Oct 22 2020
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&]
Showing 1-10 of 32 results. Next