cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A302569 Numbers that are either prime or whose prime indices are pairwise coprime. Heinz numbers of integer partitions with pairwise coprime parts.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
The Heinz number of an integer partition (y_1,..,y_k) is prime(y_1)*..*prime(y_k).

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
19: {{1,1,1}}
20: {{},{},{2}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
26: {{},{1,2}}
28: {{},{},{1,1}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[200],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
  • PARI
    is(n)=if(n<9, return(n>1)); n>>=valuation(n,2); if(n<9, return(1)); my(f=factor(n)); if(vecmax(f[,2])>1, return(0)); if(#f~==1, return(1)); my(v=apply(primepi, f[,1]),P=vecprod(v)); for(i=1,#v, if(gcd(v[i],P/v[i])>1, return(0))); 1 \\ Charles R Greathouse IV, Nov 11 2021

A303975 Number of distinct prime factors in the product of prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
First appearance of n is A062447(n - 1).

Examples

			9193 has prime indices {10, 66} with product 660, which has 4 distinct prime factors {2, 3, 5, 11}, so a(9193) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[If[n==1,1,Times@@PrimePi/@First/@FactorInteger[n]]],{n,100}]
  • PARI
    a(n) = my(v = factor(n)[, 1]); omega(prod(i = 1, #v, primepi(v[i]))) \\ David A. Corneth, Dec 29 2018

Formula

a(n) = A001221(A156061(n)). - Michel Marcus, Jan 01 2019

A302796 Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 42, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 78, 82, 85, 86, 93, 94, 95, 102, 105, 106, 110, 114, 118, 119, 122, 123, 130, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 174, 177, 178, 182
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
42 : {1,2,4}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&]
  • PARI
    isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ Michel Marcus, Apr 13 2018

A302797 Squarefree numbers whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions with pairwise coprime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 82, 85, 86, 93, 94, 95, 102, 106, 110, 118, 119, 122, 123, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 177, 178, 186, 187, 190, 194, 201, 202
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
69 : {2,9}
70 : {1,3,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]]&]

A322526 Number of integer partitions of n whose product of parts is a squarefree number.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 8, 9, 10, 13, 15, 17, 21, 24, 27, 30, 36, 41, 46, 51, 57, 65, 73, 82, 90, 101, 109, 121, 134, 150, 164, 177, 193, 214, 232, 253, 278, 300, 324, 351, 386, 419, 452, 484, 521, 563, 610, 658, 706, 758, 809, 868, 938, 1006, 1071, 1140, 1220, 1307
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

The parts of such a partition must also be squarefree and distinct except for any number of 1's.

Examples

			The a(8) = 9 partitions are (53), (71), (521), (611), (5111), (32111), (311111), (2111111), (11111111). Missing from this list are (8), (62), (44), (431), (422), (4211), (41111), (332), (3311), (3221), (2222), (22211), (221111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SquareFreeQ[Times@@#]&]],{n,30}]

A302521 Odd numbers whose prime indices are squarefree and have disjoint prime indices. Numbers n such that the n-th multiset multisystem is a set partition.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 41, 43, 47, 51, 55, 59, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 215, 219, 221, 233, 241, 249, 255, 257, 269, 271
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set partitions.
01: {}
03: {{1}}
05: {{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
67: {{8}}
73: {{2,4}}
79: {{1,5}}
83: {{9}}
85: {{2},{4}}
93: {{1},{5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],UnsameQ@@Join@@primeMS/@primeMS[#]&]

A302798 Squarefree numbers that are prime or whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions that either consist of a single part or have pairwise coprime parts.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 66, 67, 69, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 113, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
03 : {2}
05 : {3}
06 : {1,2}
07 : {4}
10 : {1,3}
11 : {5}
13 : {6}
14 : {1,4}
15 : {2,3}
17 : {7}
19 : {8}
22 : {1,5}
23 : {9}
26 : {1,6}
29 : {10}
30 : {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&(PrimeQ[#]||CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]])]&]

A322527 Number of integer partitions of n whose product of parts is a power of a squarefree number (A072774).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 31, 34, 45, 51, 63, 72, 88, 97, 120, 128, 158, 174, 201, 222, 264, 287, 333, 359, 416, 441, 518, 557, 631, 684, 770, 833, 954, 1017, 1141, 1222, 1378, 1475, 1643, 1755, 1939, 2097, 2327, 2471, 2758, 2928, 3233, 3470, 3813, 4085
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 18 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (52)       (44)
             (111)  (31)    (41)     (42)      (61)       (53)
                    (211)   (221)    (51)      (331)      (71)
                    (1111)  (311)    (222)     (421)      (422)
                            (2111)   (321)     (511)      (521)
                            (11111)  (411)     (2221)     (611)
                                     (2211)    (3211)     (2222)
                                     (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
Missing from the list for n = 7 through 9:
  (43)   (62)    (54)
  (322)  (332)   (63)
         (431)   (432)
         (3221)  (522)
                 (621)
                 (3222)
                 (3321)
                 (4311)
                 (32211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Last/@FactorInteger[Times@@#]&]],{n,30}]

A322530 Number of integer partitions of n with no 1's whose product of parts is a squarefree number.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 2, 1, 1, 3, 2, 2, 4, 3, 3, 3, 6, 5, 5, 5, 6, 8, 8, 9, 8, 11, 8, 12, 13, 16, 14, 13, 16, 21, 18, 21, 25, 22, 24, 27, 35, 33, 33, 32, 37, 42, 47, 48, 48, 52, 51, 59, 70, 68, 65, 69, 80, 87, 90, 103, 100, 96, 103, 123, 128, 135, 136, 132, 153
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

Such a partition must be strict and its parts must also be squarefree.

Examples

			The a(26) = 11 integer partitions:
  (26),
  (15,11), (19,7), (21,5), (23,3),
  (13,7,6), (13,10,3), (13,11,2), (17,7,2), (19,5,2),
  (11,7,5,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&SquareFreeQ[Times@@#]&]],{n,30}]

A324324 MM-numbers of crossing set partitions.

Original entry on oeis.org

2117, 3973, 4843, 5891, 6757, 7181, 7801, 10019, 10063, 11051, 11567, 13021, 13193, 13459, 14123, 14921, 17603, 18407, 18761, 18877, 19307, 19633, 20941, 21083, 21251, 21457, 22849, 23519, 23533, 24727, 26101, 27133, 27169, 27173, 27413, 29111, 30479, 31261
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part in the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is crossing if it contains two parts of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Crossrefs

Cf. A000108 (non-crossing set partitions), A001055, A001222, A003963, A005117, A016098 (crossing set partitions), A054726, A056239, A112798, A302242, A302243, A302505, A302521 (MM-numbers of set partitions).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    setptnQ[bks_]:=UnsameQ@@Join@@bks&&!MemberQ[bks,{}];
    Select[Range[10000],And[croXQ[primeMS/@primeMS[#]],setptnQ[primeMS/@primeMS[#]]]&]
Showing 1-10 of 25 results. Next