A078135
Numbers which cannot be written as a sum of squares > 1.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 19, 23
Offset: 1
-
nn=100;
ser=Product[If[SquareFreeQ[n],1,1/(1-x^n)],{n,nn}];
Join@@Position[CoefficientList[Series[ser,{x,0,nn}],x],0]-1 (* Gus Wiseman, Dec 14 2018 *)
A322527
Number of integer partitions of n whose product of parts is a power of a squarefree number (A072774).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 31, 34, 45, 51, 63, 72, 88, 97, 120, 128, 158, 174, 201, 222, 264, 287, 333, 359, 416, 441, 518, 557, 631, 684, 770, 833, 954, 1017, 1141, 1222, 1378, 1475, 1643, 1755, 1939, 2097, 2327, 2471, 2758, 2928, 3233, 3470, 3813, 4085
Offset: 0
The a(1) = 1 through a(8) = 18 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (52) (44)
(111) (31) (41) (42) (61) (53)
(211) (221) (51) (331) (71)
(1111) (311) (222) (421) (422)
(2111) (321) (511) (521)
(11111) (411) (2221) (611)
(2211) (3211) (2222)
(3111) (4111) (3311)
(21111) (22111) (4211)
(111111) (31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
Missing from the list for n = 7 through 9:
(43) (62) (54)
(322) (332) (63)
(431) (432)
(3221) (522)
(621)
(3222)
(3321)
(4311)
(32211)
Cf.
A003963,
A005117,
A038041,
A062503,
A064573,
A072774,
A295193,
A302505,
A306021,
A319169,
A320322,
A322526,
A322528,
A322530.
A322530
Number of integer partitions of n with no 1's whose product of parts is a squarefree number.
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 1, 2, 1, 1, 3, 2, 2, 4, 3, 3, 3, 6, 5, 5, 5, 6, 8, 8, 9, 8, 11, 8, 12, 13, 16, 14, 13, 16, 21, 18, 21, 25, 22, 24, 27, 35, 33, 33, 32, 37, 42, 47, 48, 48, 52, 51, 59, 70, 68, 65, 69, 80, 87, 90, 103, 100, 96, 103, 123, 128, 135, 136, 132, 153
Offset: 0
The a(26) = 11 integer partitions:
(26),
(15,11), (19,7), (21,5), (23,3),
(13,7,6), (13,10,3), (13,11,2), (17,7,2), (19,5,2),
(11,7,5,3).
Cf.
A002865,
A003963,
A005117,
A064573,
A072774,
A073576,
A302505,
A319005,
A319057,
A319169,
A320322,
A322527,
A322528,
A322529.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&SquareFreeQ[Times@@#]&]],{n,30}]
A322528
Number of integer partitions of n whose parts all have the same number of prime factors (counted with multiplicity) and whose product of parts is a power of a squarefree number (A072774).
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 4, 3, 5, 4, 7, 2, 7, 4, 7, 7, 9, 3, 10, 5, 12, 9, 8, 6, 14, 10, 12, 10, 14, 11, 20, 13, 18, 13, 16, 16, 25, 16, 19, 20, 26, 18, 30, 19, 27, 26, 27, 22, 38, 30, 37, 28, 38, 32, 43, 37, 46, 40, 47, 40, 66, 49, 58, 56, 64, 56, 73, 58, 76, 70, 85
Offset: 0
The a(1) = 1 through a(8) = 5 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (32) (33) (52) (44)
(1111) (11111) (222) (1111111) (53)
(111111) (2222)
(11111111)
Cf.
A002865,
A003963,
A005117,
A064573 ,
A072774,
A295193,
A302505,
A306017,
A319169,
A320322,
A322526,
A322527,
A322529,
A322530,
A322531.
-
Table[Length[Select[IntegerPartitions[n],And[SameQ@@PrimeOmega/@#,SameQ@@Last/@FactorInteger[Times@@#]]&]],{n,30}]
A322529
Number of integer partitions of n whose parts all have the same number of prime factors (counted with or without multiplicity) and whose product of parts is a squarefree number.
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 2, 3, 2, 2, 4, 2, 3, 3, 4, 4, 4, 3, 5, 4, 5, 6, 6, 6, 6, 6, 8, 6, 7, 9, 8, 11, 8, 11, 11, 11, 12, 13, 13, 15, 13, 17, 17, 18, 18, 17, 20, 22, 21, 24, 24, 24, 26, 29, 28, 33, 30, 35, 34, 38, 38, 45, 42, 43, 45, 48, 52, 54, 55, 59, 59, 65, 65, 72, 73
Offset: 0
The a(30) = 8 integer partitions:
(30),
(17,13),(19,11),(23,7),
(17,11,2),(23,5,2),
(13,7,5,3,2),
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).
Cf.
A002865,
A003963,
A005117,
A038041,
A064573,
A073576,
A302505,
A319056,
A320322,
A321717,
A321718,
A322526,
A322527,
A322528,
A322530,
A322531.
-
Table[Length[Select[IntegerPartitions[n],And[SameQ@@PrimeOmega/@#,SquareFreeQ[Times@@#]]&]],{n,30}]
A322531
Heinz numbers of integer partitions whose parts all have the same number of prime factors (counted with or without multiplicity) and whose product of parts is a squarefree number.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 11, 13, 15, 16, 17, 29, 31, 32, 33, 41, 43, 47, 51, 55, 59, 64, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 128, 137, 139, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 233, 241, 249, 255, 256, 257, 269, 271
Offset: 1
The sequence of all integer partitions whose parts all have the same number of prime factors and whose product of parts is a squarefree number begins: (), (1), (2), (1,1), (3), (1,1,1), (5), (6), (3,2), (1,1,1,1), (7), (10), (11), (1,1,1,1,1), (5,2), (13), (14), (15), (7,2), (5,3), (17), (1,1,1,1,1,1).
Cf.
A003963,
A005117,
A038041,
A056239,
A073576,
A112798,
A302242,
A302505,
A306017,
A319056,
A319169,
A320324,
A321717,
A321718,
A322526,
A322528.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SquareFreeQ[Times@@primeMS[#]]]&]
A319877
Numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
Original entry on oeis.org
1, 7, 9, 14, 18, 23, 25, 28, 36, 46, 50, 56, 72, 92, 97, 100, 112, 121, 144, 151, 161, 169, 175, 183, 184, 185, 194, 195, 200, 207, 224, 225, 227, 242, 288, 289, 302, 322, 338, 350, 366, 368, 370, 388, 390, 400, 414, 448, 450, 454, 484, 541, 576, 578, 604, 644
Offset: 1
The sequence of multiset multisystems whose MM-numbers belong to the sequence begins:
1: {}
7: {{1,1}}
9: {{1},{1}}
14: {{},{1,1}}
18: {{},{1},{1}}
23: {{2,2}}
25: {{2},{2}}
28: {{},{},{1,1}}
36: {{},{},{1},{1}}
46: {{},{2,2}}
50: {{},{2},{2}}
56: {{},{},{},{1,1}}
72: {{},{},{},{1},{1}}
92: {{},{},{2,2}}
97: {{3,3}}
100: {{},{},{2},{2}}
112: {{},{},{},{},{1,1}}
121: {{3},{3}}
144: {{},{},{},{},{1},{1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
183: {{1},{1,2,2}}
184: {{},{},{},{2,2}}
185: {{2},{1,1,2}}
194: {{},{3,3}}
195: {{1},{2},{1,2}}
200: {{},{},{},{2},{2}}
Cf.
A003963,
A005117,
A005176,
A062503,
A064573,
A072774,
A295193,
A302505,
A319878,
A319899,
A320325,
A322526,
A322527,
A322530.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]
A319878
Odd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
Original entry on oeis.org
1, 7, 9, 23, 25, 97, 121, 151, 161, 169, 175, 183, 185, 195, 207, 225, 227, 289, 541, 661, 679, 687, 781, 841, 847, 873, 957, 961, 1009, 1089, 1193, 1427, 1563, 1589, 1681, 1819, 1849, 1879, 1895, 2023, 2043, 2167, 2193, 2209, 2231, 2425, 2437, 2585, 2601
Offset: 1
The sequence of multiset partitions whose MM-numbers belong to the sequence begins:
1: {}
7: {{1,1}}
9: {{1},{1}}
23: {{2,2}}
25: {{2},{2}}
97: {{3,3}}
121: {{3},{3}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
183: {{1},{1,2,2}}
185: {{2},{1,1,2}}
195: {{1},{2},{1,2}}
207: {{1},{1},{2,2}}
225: {{1},{1},{2},{2}}
227: {{4,4}}
289: {{4},{4}}
541: {{1,1,3,3}}
661: {{5,5}}
679: {{1,1},{3,3}}
687: {{1},{1,3,3}}
781: {{3},{1,1,3}}
841: {{1,3},{1,3}}
847: {{1,1},{3},{3}}
873: {{1},{1},{3,3}}
957: {{1},{3},{1,3}}
961: {{5},{5}}
Cf.
A003963,
A005117,
A005176,
A062503,
A064573,
A072774,
A295193,
A302505,
A319877,
A319899,
A320325,
A322526,
A322527,
A322530.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1,100,2],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]
Showing 1-8 of 8 results.
Comments