cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A001156 Number of partitions of n into squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 43, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 98, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 220, 235, 247, 256
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n such that number of parts equal to k is multiple of k for all k. - Vladeta Jovovic, Aug 01 2004
Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - Michael David Hirschhorn, May 05 2005
The Heinz numbers of these partitions are given by A324588. - Gus Wiseman, Mar 09 2019

Examples

			p_{4*square}(23)=1 because 23 = 3^2 + 3^2 + 2^2 + 1^2 and there is no other partition of 23 into squares.
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 +...
such that the g.f. A(x) satisfies the identity [_Paul D. Hanna_]:
A(x) = 1/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*...)
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^4)) + x^9/((1-x)*(1-x^4)*(1-x^9)) + x^16/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)) + ...
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(14) = 6 integer partitions into squares are:
  (941)
  (911111)
  (44411)
  (44111111)
  (41111111111)
  (11111111111111)
while the a(14) = 6 integer partitions in which the multiplicity of k is a multiple of k for all k are:
  (333221)
  (33311111)
  (22222211)
  (2222111111)
  (221111111111)
  (11111111111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A000161 (partitions into 2 squares), A000290, A033461, A131799, A218494, A285218, A304046.
Cf. A078134 (first differences).
Row sums of A243148.
Euler trans. of A010052 (see also A308297).

Programs

  • Haskell
    a001156 = p (tail a000290_list) where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Oct 31 2012, Aug 14 2011
    
  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 11 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 30 2014
  • Mathematica
    CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *)
    Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* Robert G. Wilson v, Apr 12 2005, revised Sep 27 2011 *)
    f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* Robert G. Wilson v, Apr 14 2013 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ Paul D. Hanna, Mar 09 2012
    
  • PARI
    {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ Paul D. Hanna, Mar 09 2012
    

Formula

G.f.: Product_{m>=1} 1/(1-x^(m^2)).
G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - Paul D. Hanna, Mar 09 2012
a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - Vladeta Jovovic, Nov 20 2002
a(n) = f(n,1,3) with f(x,y,z) = if xReinhard Zumkeller, Nov 08 2009
Conjecture (Jan Bohman, Carl-Erik Fröberg, Hans Riesel, 1979): a(n) ~ c * n^(-alfa) * exp(beta*n^(1/3)), where c = 1/18.79656, beta = 3.30716, alfa = 1.16022. - Vaclav Kotesovec, Aug 19 2015
From Vaclav Kotesovec, Dec 29 2016: (Start)
Correct values of these constants are:
1/c = sqrt(3) * (4*Pi)^(7/6) / Zeta(3/2)^(2/3) = 17.49638865935104978665...
alfa = 7/6 = 1.16666666666666666...
beta = 3/2 * (Pi/2)^(1/3) * Zeta(3/2)^(2/3) = 3.307411783596651987...
a(n) ~ 3^(-1/2) * (4*Pi*n)^(-7/6) * Zeta(3/2)^(2/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)). [Hardy & Ramanujan, 1917]
(End)

Extensions

More terms from Eric W. Weisstein
More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006

A033461 Number of partitions of n into distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 2, 3, 1, 1, 4, 3, 0, 1, 2, 2, 1, 0, 1, 4, 3, 0, 2, 4, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 3, 6, 3, 0, 2, 5, 3, 0, 1, 3, 3, 3, 4
Offset: 0

Views

Author

Keywords

Comments

"WEIGH" transform of squares A000290.
a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}. - Alois P. Heinz, May 14 2014
Number of partitions of n in which each part i has multiplicity i. Example: a(50)=3 because we have [1,2,2,3,3,3,6,6,6,6,6,6], [1,7,7,7,7,7,7,7], and [3,3,3,4,4,4,4,5,5,5,5,5]. - Emeric Deutsch, Jan 26 2016
The Heinz numbers of integer partitions into distinct pairs are given by A324587. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Equivalent to Emeric Deutsch's comment, a(n) is the number of integer partitions of n where the multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in increasing order. The Heinz numbers of these partitions are given by A109298. For example, the first 30 terms count the following integer partitions:
1: (1)
4: (22)
5: (221)
9: (333)
10: (3331)
13: (33322)
14: (333221)
16: (4444)
17: (44441)
20: (444422)
21: (4444221)
25: (55555)
25: (4444333)
26: (555551)
26: (44443331)
29: (5555522)
29: (444433322)
30: (55555221)
30: (4444333221)
The case where the distinct parts are taken in decreasing order is A324572, with Heinz numbers given by A324571.
(End)

Examples

			a(50)=3 because we have [1,4,9,36], [1,49], and [9,16,25]. - _Emeric Deutsch_, Jan 26 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The first 30 terms count the following integer partitions:
   1: (1)
   4: (4)
   5: (4,1)
   9: (9)
  10: (9,1)
  13: (9,4)
  14: (9,4,1)
  16: (16)
  17: (16,1)
  20: (16,4)
  21: (16,4,1)
  25: (25)
  25: (16,9)
  26: (25,1)
  26: (16,9,1)
  29: (25,4)
  29: (16,9,4)
  30: (25,4,1)
  30: (16,9,4,1)
(End)
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-289.

Crossrefs

Cf. A001422, A003995, A078434, A242434 (the same for compositions), A279329.
Row sums of A341040.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i-1))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 14 2014
  • Mathematica
    nn=10; CoefficientList[Series[Product[(1+x^(k*k)), {k,nn}], {x,0,nn*nn}], x] (* T. D. Noe, Jul 24 2006 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n - i^2, i-1]]]]; a[n_] := b[n, Floor[Sqrt[n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Dec 09 2016 *)
    Table[Length[Select[IntegerPartitions[n],Reverse[Union[#]]==Length/@Split[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    a(n)=polcoeff(prod(k=1,sqrt(n),1+x^k^2), n)
    
  • PARI
    first(n)=Vec(prod(k=1,sqrtint(n),1+'x^k^2,O('x^(n+1))+1)) \\ Charles R Greathouse IV, Sep 03 2015
    
  • Python
    from functools import cache
    from sympy.core.power import isqrt
    @cache
    def b(n,i):
      # Code after Alois P. Heinz
      if n == 0: return 1
      if i == 0: return 0
      i2 = i*i
      return b(n, i-1) + (0 if i2 > n else b(n - i2, i-1))
    a = lambda n: b(n, isqrt(n))
    print([a(n) for n in range(1, 101)]) # Darío Clavijo, Nov 30 2023

Formula

G.f.: Product_{n>=1} ( 1+x^(n^2) ).
a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * ((sqrt(2)-1)*zeta(3/2))^(2/3) * n^(1/3)) * ((sqrt(2)-1)*zeta(3/2))^(1/3) / (2^(4/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where zeta(3/2) = A078434. - Vaclav Kotesovec, Dec 09 2016
See Murthy, Brack, Bhaduri, Bartel (2018) for a more complete asymptotic expansion. - N. J. A. Sloane, Aug 17 2018

Extensions

More terms from Michael Somos

A078134 Number of ways to write n as sum of squares > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 3, 1, 1, 2, 3, 1, 1, 3, 3, 3, 1, 5, 3, 3, 1, 5, 5, 3, 3, 5, 7, 3, 3, 6, 8, 6, 3, 9, 8, 8, 3, 9, 10, 9, 6, 9, 14, 9, 8, 11, 15, 12, 9, 15, 15, 16, 9, 18, 18, 18, 13, 19, 23, 18, 17, 21, 28, 22, 19, 26, 30, 28, 19, 31, 34, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

a(A078135(n))=0; a(A078136(n))=1; a(A078137(n))>0;
Conjecture (lower bound): for all k exists b(k) such that a(n)>k for n>b(k); see b(0)=A078135(12)=23 and b(1)=A078136(15)=39. This is true - see comments by Hieronymus Fischer.
Also first difference of A001156 (number of partitions of n into squares). - Wouter Meeussen, Oct 22 2005
Comments from Hieronymus Fischer, Nov 11 2007 (Start): First statement of monotony: a(n+k^2)>=a(n) for all k>1. Proof: we restrict ourselves on a(n)>0 (the case a(n)=0 is trivial). Let T(i), 1<=i<=a(n), be the a(n) different sum expressions of squares >1 representing n. Then, adding k^2 to those expressions, we get a(n) sums of squares T(i)+k^2, obviously representing n+k^2, thus a(n+k^2) cannot be less than a(n).
Second statement of monotony: a(n+m)>=max(a(n),a(m)) for all m with a(m)>1. Proof: let T(i), 1<=i<=a(n), be the a(n) different sum expressions of squares >1 representing n; let S(i), 1<=i<=a(m), be the a(m) different sum expressions of squares >1 representing m. Then, adding those expressions, we get a(n) sums of squares T(i)+S(1), representing n+m, further we get a(m) sums T(1)+S(i), also representing n+m, thus a(n+m) cannot be less than the maximum of a(n) and a(m).
The author's conjecture holds true. Proof by induction: b(0) exists; if b(k) exists, then a(j)>k for all j>b(k). Setting m:=b(k)+1, we find that there are k+1 sums B(0,i) of squares >1, 1<=i<=k+1, with m=B(0,i). Further there are k+1 such sum expressions B(1,i), B(2,i) and B(3,i), 1<=i<=k+1, representing m+1, m+2 and m+3, respectively. For n>b(k) we have n=m+4*floor((n-m)/4)+(n-m) mod 4.
Thus n=m+r+s*2^2, where r=0,1,2 or 3. Hence n can be written B(r,i)+s*2^2 and there are k+1 such representations. Let q be the maximal number (to be squared) occurring as a term within those sum expressions B(r,i), 0<=r<=3,1<=i<=k+1. We select a number p>q and we set c:=b(k)+p^2. For n>c, we have the k+1 representations B(r(n),i)+s(n)*2^2.
Additionally, for n-p^2 (which is >b(k)) there are also k+1 representations B(r_p,i)+s_p*2^2, where r_p:=r(n-p^2), s_p:=s(n-p^2). Thus n can be written B(r(n),i)+s(n)*2^2, 1<=i<=k+1 and B(r_p,i)+s_p*2^2+p^2, 1<=i<=k+1.
By choice of p all these sum representations of n are different, which implies, that there are 2k+2 such representations. It follows a(n)>2k+2>k+1 for all n>c, which implies, that b(k+1) exists.
A more precise formulation of the author's conjecture is "b(k):=min( n | a(j)>k for all j>n) exists for all k>=0". (End)
A033183(n) <= a(n). [From Reinhard Zumkeller, Nov 07 2009]

Examples

			a(42)=3: 2*3^2+6*2^2 = 4^2+2*3^2+2*2^2 = 5^2+3^2+2*2^2.
		

Crossrefs

See A134754 for the sequence representing b(k).

Programs

  • Haskell
    a078134 = p $ drop 2 a000290_list where
       p _          0 = 1
       p ks'@(k:ks) x = if x < k then 0 else p ks' (x - k) + p ks x
    -- Reinhard Zumkeller, May 04 2013
  • Mathematica
    Join[{1}, Table[Length[PowersRepresentations[n, n, 2]], {n, 1, 90}]] // Differences
    (* or *)
    m = 91; CoefficientList[Product[1/(1 - x^(k^2)), {k, 1, m}] + O[x]^m, x] // Differences (* Jean-François Alcover, Mar 01 2019 *)

Formula

a(n) = 1/n*Sum_{k=1..n} (A035316(k)-1)*a(n-k), a(0) = 1. - Vladeta Jovovic, Nov 20 2002
G.f. g(x)=product{k>1, 1/(1-x^(k^2))}-1 = 1/((1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*(1-x^36)*...)-1. - Hieronymus Fischer, Nov 19 2007
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2^(4/3)) * Zeta(3/2)^(4/3) / (2^(11/3) * sqrt(3) * Pi^(5/6) * n^(11/6)). - Vaclav Kotesovec, Jan 05 2017

A114374 Number of partitions of n into parts that are not squarefree.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 1, 0, 0, 5, 2, 2, 0, 7, 3, 2, 0, 11, 6, 4, 3, 15, 8, 6, 3, 22, 13, 11, 6, 34, 18, 15, 9, 46, 27, 24, 17, 64, 43, 33, 23, 89, 60, 51, 37, 124, 84, 78, 51, 166, 119, 109, 78, 226, 168, 152, 118, 300, 228, 215, 166, 404, 313, 300, 230, 546, 421, 409
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 09 2006

Keywords

Comments

a(A078135(n)) = 0; a(A078137(n)) > 0.

Examples

			a(12) = #{2*2*3, 2*2*2 + 2*2, 2*2 + 2*2 + 2*2} = 3;
a(13) = #{3*3 + 2*2} = 1.
		

Crossrefs

Programs

  • Haskell
    a114374 = p a013929_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(i>n or issqrfree(i), 0, b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 03 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n || SquareFreeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A073576(n) - A117395(n). - Reinhard Zumkeller, Mar 11 2006
G.f.: Product_{k>=1} (1 - mu(k)^2*x^k)/(1 - x^k), where mu(k) is the Moebius function (A008683). - Ilya Gutkovskiy, Dec 30 2016

Extensions

Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015

A090677 Number of ways to partition n into sums of squares of primes.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 4, 4, 2, 3, 4, 5, 3, 3, 5, 5, 4, 3, 5, 5, 5, 4, 5, 6, 5, 5, 5, 7, 6, 6, 6, 7, 7, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 8, 9, 9, 10, 9, 9, 10, 11, 11, 10, 11
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2003

Keywords

Comments

From Hieronymus Fischer, Nov 11 2007: (Start)
First statement of monotony: a(n+p^2)>=a(n) for all primes p. Proof: we restrict ourselves on a(n)>0 (the case a(n)=0 is trivial). Let T(i), 1<=i<=a(n), be the a(n) different sums of squares of primes representing n. Then, adding p^2 to those expressions, we get a(n) sums of squares of primes T(i)+p^2, obviously representing n+p^2, thus a(n+p^2) cannot be less than a(n).
Second statement of monotony: a(n+m)>=max(a(n),a(m)) for all m with a(m)>1. Proof: let T(i), 1<=i<=a(n), be the a(n) different sums of squares of primes representing n; let S(i), 1<=i<=a(m), be the a(m) different sums of squares of primes representing m. Then, adding these expressions, we get a(n) sums of squares of primes T(i)+S(1), representing n+m, further we get a(m) sums T(1)+S(i), also representing n+m. Thus a(n+m) cannot be less than the maximum of a(n) and a(m).
The minimum b(k):=min( n | a(j)>k for all j>n) exists for all k>=0. See A134755 for that sequence representing b(k). (End)

Examples

			a(25)=2 because 25 = 5^2 = 4*(2^2)+3^2.
a(83)=8 because 83 = 3^2+5^2+7^2 = 4*(2^2)+2*(3^2)+7^2
                   = 2*(2^2)+3*(5^2) = 6*(2^2)+3^2+2*(5^2)
                   = 2^2+6*(3^2)+5^2 = 10*(2^2)+2*(3^2)+5^2
                   = 5*(2^2)+7*(3^2) = 14*(2^2)+3*(3^2).
		

References

  • R. F. Churchouse, Representation of integers as sums of squares of primes. Caribbean J. Math. 5 (1986), no. 2, 59-65.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ Product[1/(1 - x^Prime[i]^2), {i, 111}], {x, 0, 101}], x] (* Robert G. Wilson v, Sep 20 2004 *)

Formula

G.f.: 1/((1-x^4)*(1-x^9)*(1-x^25)*(1-x^49)*(1-x^121)*(1-x^169)*(1-x^289)...).
G.f.: 1 + Sum_{i>=1} x^(prime(i)^2) / Product_{j=1..i} (1 - x^(prime(j)^2)). - Ilya Gutkovskiy, May 07 2017

A078137 Numbers which can be written as sum of squares>1.

Original entry on oeis.org

4, 8, 9, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

A078134(a(n))>0.
Numbers which can be written as a sum of squares of primes. - Hieronymus Fischer, Nov 11 2007
Equivalently, numbers which can be written as a sum of squares of 2 and 3. Proof for numbers m>=24: if m=4*(k+6), k>=0, then m=(k+6)*2^2; if m=4*(k+6)+1 than m=(k+4)*2^2+3^2; if m=4*(k+6)+2 then m=(k+2)*2^2+2*3^2; if m=4*(k+6)+3 then m=k*2^2+3*3^2. Clearly, the numbers a(n)<24 can also be written as sums of squares of 2 and 3. Explicit representation as a sum of squares of 2 and 3 for numbers m>23: m=c*2^2+d*3^2, where c:=(floor(m/4) - 2*(m mod 4))>=0 and d:=m mod 4. - Hieronymus Fischer, Nov 11 2007

Crossrefs

Programs

Formula

a(n)=n + 12 for n >= 12. - Hieronymus Fischer, Nov 11 2007

Extensions

Edited by N. J. A. Sloane, Oct 17 2009 at the suggestion of R. J. Mathar.

A324588 Heinz numbers of integer partitions of n into perfect squares (A001156).

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 23, 28, 32, 46, 49, 53, 56, 64, 92, 97, 98, 106, 112, 128, 151, 161, 184, 194, 196, 212, 224, 227, 256, 302, 311, 322, 343, 368, 371, 388, 392, 419, 424, 448, 454, 512, 529, 541, 604, 622, 644, 661, 679, 686, 736, 742, 776, 784, 827, 838
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   7: {4}
   8: {1,1,1}
  14: {1,4}
  16: {1,1,1,1}
  23: {9}
  28: {1,1,4}
  32: {1,1,1,1,1}
  46: {1,9}
  49: {4,4}
  53: {16}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  92: {1,1,9}
  97: {25}
  98: {1,4,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],And@@Cases[FactorInteger[#],{p_,_}:>IntegerQ[Sqrt[PrimePi[p]]]]&]

A078136 Numbers having exactly one representation as sum of squares>1.

Original entry on oeis.org

4, 8, 9, 12, 13, 17, 18, 21, 22, 26, 27, 30, 31, 35, 39
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

A078134(a(n))=1.
The sequence is finite with a(15)=39 as last term, since numbers m>39 can be represented as sums of squares>1 (even of squares of primes and even of squares of 2, 3 and 4 and even of squares of 2, 3 and 5) in at least two ways. Proof: if m=40+4k, k>=0, then m=(k+10)*2^2=(k+1)*2^2+4*3^2; if m=41+4k, then m=(k+8)*2^2+3^2=(k+4)*2^2+5^2; if m=42+4k, then m=(k+6)*2^2+2*3^2=(k+2)*2^2+3^2+5^2; if m=43+4k, then m=(k+4)*2^2+3*3^2=k*2^2+2*3^2+5^2. - Hieronymus Fischer, Nov 11 2007

Crossrefs

A078139 Primes which cannot be written as sum of squares>1.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 23
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

From Hieronymus Fischer, Nov 11 2007: (Start)
Equivalently, prime numbers which cannot be written as sum of squares of primes (see A078137 for the proof).
Equivalently, prime numbers which cannot be written as sum of squares of 2 and 3 (see A078137 for the proof).
The sequence is finite, since numbers > 23 can be written as sums of squares >1 (see A078135).
Explicit representation as sum of squares of primes, or rather of squares of 2 and 3, for numbers m>23: we have m=c*2^2+d*3^2, where c:=(floor(m/4) - 2*(m mod 4))>=0, d:=m mod 4. For that, the finiteness of the sequence is proved. (End)

Crossrefs

A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461).

Original entry on oeis.org

1, 2, 7, 14, 23, 46, 53, 97, 106, 151, 161, 194, 227, 302, 311, 322, 371, 419, 454, 541, 622, 661, 679, 742, 827, 838, 1009, 1057, 1082, 1193, 1219, 1322, 1358, 1427, 1589, 1619, 1654, 1879, 2018, 2114, 2143, 2177, 2231, 2386, 2437, 2438, 2741, 2854, 2933
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    7: {4}
   14: {1,4}
   23: {9}
   46: {1,9}
   53: {16}
   97: {25}
  106: {1,16}
  151: {36}
  161: {4,9}
  194: {1,25}
  227: {49}
  302: {1,36}
  311: {64}
  322: {1,4,9}
  371: {4,16}
  419: {81}
  454: {1,49}
  541: {100}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]
Showing 1-10 of 20 results. Next