cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001156 Number of partitions of n into squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 43, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 98, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 220, 235, 247, 256
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n such that number of parts equal to k is multiple of k for all k. - Vladeta Jovovic, Aug 01 2004
Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - Michael David Hirschhorn, May 05 2005
The Heinz numbers of these partitions are given by A324588. - Gus Wiseman, Mar 09 2019

Examples

			p_{4*square}(23)=1 because 23 = 3^2 + 3^2 + 2^2 + 1^2 and there is no other partition of 23 into squares.
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 +...
such that the g.f. A(x) satisfies the identity [_Paul D. Hanna_]:
A(x) = 1/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*...)
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^4)) + x^9/((1-x)*(1-x^4)*(1-x^9)) + x^16/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)) + ...
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(14) = 6 integer partitions into squares are:
  (941)
  (911111)
  (44411)
  (44111111)
  (41111111111)
  (11111111111111)
while the a(14) = 6 integer partitions in which the multiplicity of k is a multiple of k for all k are:
  (333221)
  (33311111)
  (22222211)
  (2222111111)
  (221111111111)
  (11111111111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A000161 (partitions into 2 squares), A000290, A033461, A131799, A218494, A285218, A304046.
Cf. A078134 (first differences).
Row sums of A243148.
Euler trans. of A010052 (see also A308297).

Programs

  • Haskell
    a001156 = p (tail a000290_list) where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Oct 31 2012, Aug 14 2011
    
  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 11 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 30 2014
  • Mathematica
    CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *)
    Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* Robert G. Wilson v, Apr 12 2005, revised Sep 27 2011 *)
    f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* Robert G. Wilson v, Apr 14 2013 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ Paul D. Hanna, Mar 09 2012
    
  • PARI
    {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ Paul D. Hanna, Mar 09 2012
    

Formula

G.f.: Product_{m>=1} 1/(1-x^(m^2)).
G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - Paul D. Hanna, Mar 09 2012
a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - Vladeta Jovovic, Nov 20 2002
a(n) = f(n,1,3) with f(x,y,z) = if xReinhard Zumkeller, Nov 08 2009
Conjecture (Jan Bohman, Carl-Erik Fröberg, Hans Riesel, 1979): a(n) ~ c * n^(-alfa) * exp(beta*n^(1/3)), where c = 1/18.79656, beta = 3.30716, alfa = 1.16022. - Vaclav Kotesovec, Aug 19 2015
From Vaclav Kotesovec, Dec 29 2016: (Start)
Correct values of these constants are:
1/c = sqrt(3) * (4*Pi)^(7/6) / Zeta(3/2)^(2/3) = 17.49638865935104978665...
alfa = 7/6 = 1.16666666666666666...
beta = 3/2 * (Pi/2)^(1/3) * Zeta(3/2)^(2/3) = 3.307411783596651987...
a(n) ~ 3^(-1/2) * (4*Pi*n)^(-7/6) * Zeta(3/2)^(2/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)). [Hardy & Ramanujan, 1917]
(End)

Extensions

More terms from Eric W. Weisstein
More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006

A033461 Number of partitions of n into distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 2, 3, 1, 1, 4, 3, 0, 1, 2, 2, 1, 0, 1, 4, 3, 0, 2, 4, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 3, 6, 3, 0, 2, 5, 3, 0, 1, 3, 3, 3, 4
Offset: 0

Views

Author

Keywords

Comments

"WEIGH" transform of squares A000290.
a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}. - Alois P. Heinz, May 14 2014
Number of partitions of n in which each part i has multiplicity i. Example: a(50)=3 because we have [1,2,2,3,3,3,6,6,6,6,6,6], [1,7,7,7,7,7,7,7], and [3,3,3,4,4,4,4,5,5,5,5,5]. - Emeric Deutsch, Jan 26 2016
The Heinz numbers of integer partitions into distinct pairs are given by A324587. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Equivalent to Emeric Deutsch's comment, a(n) is the number of integer partitions of n where the multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in increasing order. The Heinz numbers of these partitions are given by A109298. For example, the first 30 terms count the following integer partitions:
1: (1)
4: (22)
5: (221)
9: (333)
10: (3331)
13: (33322)
14: (333221)
16: (4444)
17: (44441)
20: (444422)
21: (4444221)
25: (55555)
25: (4444333)
26: (555551)
26: (44443331)
29: (5555522)
29: (444433322)
30: (55555221)
30: (4444333221)
The case where the distinct parts are taken in decreasing order is A324572, with Heinz numbers given by A324571.
(End)

Examples

			a(50)=3 because we have [1,4,9,36], [1,49], and [9,16,25]. - _Emeric Deutsch_, Jan 26 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The first 30 terms count the following integer partitions:
   1: (1)
   4: (4)
   5: (4,1)
   9: (9)
  10: (9,1)
  13: (9,4)
  14: (9,4,1)
  16: (16)
  17: (16,1)
  20: (16,4)
  21: (16,4,1)
  25: (25)
  25: (16,9)
  26: (25,1)
  26: (16,9,1)
  29: (25,4)
  29: (16,9,4)
  30: (25,4,1)
  30: (16,9,4,1)
(End)
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-289.

Crossrefs

Cf. A001422, A003995, A078434, A242434 (the same for compositions), A279329.
Row sums of A341040.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i-1))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 14 2014
  • Mathematica
    nn=10; CoefficientList[Series[Product[(1+x^(k*k)), {k,nn}], {x,0,nn*nn}], x] (* T. D. Noe, Jul 24 2006 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n - i^2, i-1]]]]; a[n_] := b[n, Floor[Sqrt[n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Dec 09 2016 *)
    Table[Length[Select[IntegerPartitions[n],Reverse[Union[#]]==Length/@Split[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    a(n)=polcoeff(prod(k=1,sqrt(n),1+x^k^2), n)
    
  • PARI
    first(n)=Vec(prod(k=1,sqrtint(n),1+'x^k^2,O('x^(n+1))+1)) \\ Charles R Greathouse IV, Sep 03 2015
    
  • Python
    from functools import cache
    from sympy.core.power import isqrt
    @cache
    def b(n,i):
      # Code after Alois P. Heinz
      if n == 0: return 1
      if i == 0: return 0
      i2 = i*i
      return b(n, i-1) + (0 if i2 > n else b(n - i2, i-1))
    a = lambda n: b(n, isqrt(n))
    print([a(n) for n in range(1, 101)]) # Darío Clavijo, Nov 30 2023

Formula

G.f.: Product_{n>=1} ( 1+x^(n^2) ).
a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * ((sqrt(2)-1)*zeta(3/2))^(2/3) * n^(1/3)) * ((sqrt(2)-1)*zeta(3/2))^(1/3) / (2^(4/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where zeta(3/2) = A078434. - Vaclav Kotesovec, Dec 09 2016
See Murthy, Brack, Bhaduri, Bartel (2018) for a more complete asymptotic expansion. - N. J. A. Sloane, Aug 17 2018

Extensions

More terms from Michael Somos

A109298 Primal codes of finite idempotent functions on positive integers.

Original entry on oeis.org

1, 2, 9, 18, 125, 250, 1125, 2250, 2401, 4802, 21609, 43218, 161051, 300125, 322102, 600250, 1449459, 2701125, 2898918, 4826809, 5402250, 9653618, 20131375, 40262750, 43441281, 86882562, 181182375, 362364750, 386683451, 410338673, 603351125, 773366902, 820677346
Offset: 1

Views

Author

Jon Awbrey, Jul 06 2005

Keywords

Comments

Finite idempotent functions are identity maps on finite subsets, counting the empty function as the idempotent on the empty set.
From Gus Wiseman, Mar 09 2019: (Start)
Also numbers whose ordered prime signature is equal to the distinct prime indices in increasing order. A prime index of n is a number m such that prime(m) divides n. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base. The case where the prime indices are taken in decreasing order is A324571.
Also numbers divisible by prime(k) exactly k times for each prime index k. These are a kind of self-describing numbers (cf. A001462, A304679).
Also Heinz numbers of integer partitions where the multiplicity of m is m for all m in the support (counted by A033461). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A062457. For example, 43218 = prime(1)^1 * prime(2)^2 * prime(4)^4.
(End)

Examples

			Writing (prime(i))^j as i:j, we have the following table of examples:
Primal Codes of Finite Idempotent Functions on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = ` ` 2:2
` ` `18 = 1:1 2:2
` ` 125 = ` ` ` ` 3:3
` ` 250 = 1:1 ` ` 3:3
` `1125 = ` ` 2:2 3:3
` `2250 = 1:1 2:2 3:3
` `2401 = ` ` ` ` ` ` 4:4
` `4802 = 1:1 ` ` ` ` 4:4
` 21609 = ` ` 2:2 ` ` 4:4
` 43218 = 1:1 2:2 ` ` 4:4
`161051 = ` ` ` ` ` ` ` ` 5:5
`300125 = ` ` ` ` 3:3 4:4
`322102 = 1:1 ` ` ` ` ` ` 5:5
`600250 = 1:1 ` ` 3:3 4:4
From _Gus Wiseman_, Mar 09 2019: (Start)
The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2) has prime signature {1,2} and the distinct prime indices are also {1,2}.
       1: {}
       2: {1}
       9: {2,2}
      18: {1,2,2}
     125: {3,3,3}
     250: {1,3,3,3}
    1125: {2,2,3,3,3}
    2250: {1,2,2,3,3,3}
    2401: {4,4,4,4}
    4802: {1,4,4,4,4}
   21609: {2,2,4,4,4,4}
   43218: {1,2,2,4,4,4,4}
  161051: {5,5,5,5,5}
  300125: {3,3,3,4,4,4,4}
  322102: {1,5,5,5,5,5}
  600250: {1,3,3,3,4,4,4,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]==k]&]
  • PARI
    is(n) = my(f = factor(n)); for(i = 1, #f~, if(prime(f[i, 2]) != f[i, 1], return(0))); 1 \\ David A. Corneth, Mar 09 2019

Formula

Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/prime(n)^n) = 1.6807104966... - Amiram Eldar, Jan 03 2021

Extensions

Offset set to 1, missing terms inserted and more terms added by Alois P. Heinz, Mar 08 2019

A276078 Numbers n in whose prime factorization no exponent of any prime(k) exceeds k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

Numbers not divisible by p^(1+A000720(p)) for any prime p, where A000720(p) gives the index of prime p: 1 for 2, 2 for 3, 3 for 5, and so on.
Also Heinz numbers of integer partitions where the multiplicity of i does not exceed i for any i (A052335). Differs from A048103 in lacking {625, 1250, 1875, 3750, 4375, 5625, 6875, 8125, 8750, ...}. - Gus Wiseman, Mar 09 2019
Asymptotic density is Product_{i>=1} 1-prime(i)^(-1-i) = 0.72102334... - Amiram Eldar, Oct 20 2020

Crossrefs

Positions of zeros in A276077.
Complement: A276079.
Sequence A276076 sorted into ascending order.
Subsequence of A048103 from which it differs for the first time at n=451, where a(451) = 626, while A048103(451) = 625, a value missing from here.

Programs

  • Mathematica
    Select[Range@ 121, Or[# == 1, AllTrue[FactorInteger[#], PrimePi[#1] >= #2 & @@ # &]] &] (* Michael De Vlieger, Jun 24 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > primepi(f[k, 1]), return(0))); return (1); \\ Michel Marcus, Jun 24 2017
    
  • PARI
    is(n) = {my(t=1);forprime(p = 2, , t++; pp = p^t; if(n%pp==0, return(0)); if(pp > n, return(1)))} \\ David A. Corneth, Jun 24 2017
    
  • PARI
    upto(n) = {my(v = vector(n,i,1), t=1, res=List()); forprime(p=2, , t++; pp = p^t; if(pp>n, break); for(i=1, n\pp, v[pp*i] = 0)); for(i=1, n, if(v[i]==1, listput(res, i))); res} \\ David A. Corneth, Jun 24 2017
  • Python
    from sympy import factorint, primepi
    def ok(n):
        f = factorint(n)
        return all(f[i] <= primepi(i) for i in f)
    print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Jun 24 2017
    

A324525 Numbers divisible by prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 27, 32, 36, 54, 64, 72, 81, 108, 125, 128, 144, 162, 216, 243, 250, 256, 288, 324, 432, 486, 500, 512, 576, 625, 648, 729, 864, 972, 1000, 1024, 1125, 1152, 1250, 1296, 1458, 1728, 1944, 2000, 2048, 2187, 2250, 2304, 2401, 2500, 2592
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions where the multiplicity of k is at least k (A117144). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins as follows. For example, 36 = prime(1) * prime(1) * prime(2) * prime(2) is a term because the prime multiplicities are {2,2}, which are greater than or equal to the prime indices {1,2}.
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   54: {1,2,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
		

Crossrefs

Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> i[2]>=numtheory[pi](i[1]), ifactors(n)[2]):
    select(q, [$1..3000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=PrimePi[p]]&]
    seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^Length[ps] < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log[p, max]]; s1 = Join[{1}, p^Range[k, emax]]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {k, 1, Length[ps]}]; s]; seq[3000] (* Amiram Eldar, Nov 23 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^(k-1) * (prime(k)-1)) = 2.35782843100111139159... - Amiram Eldar, Nov 23 2020

A324524 Numbers where every prime index divides its multiplicity in the prime factorization. Numbers divisible by a power of prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 162, 250, 256, 288, 324, 500, 512, 576, 648, 729, 1000, 1024, 1125, 1152, 1296, 1458, 2000, 2048, 2250, 2304, 2401, 2592, 2916, 4000, 4096, 4500, 4608, 4802, 5184, 5832, 6561, 8000, 8192, 9000, 9216
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions in which every part divides its multiplicity (counted by A001156). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A062457.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2).
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  162: {1,2,2,2,2}
  250: {1,3,3,3}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Range of values of A090884.
Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> irem(i[2], numtheory[pi](i[1]))=0, ifactors(n)[2]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>Divisible[k,PrimePi[p]]]&]
    v = Join[{1}, Prime[(r = Range[10])]^r]; n = Length[v]; vmax = 10^4; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; Length[s] (* Amiram Eldar, Sep 30 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1/(1-prime(k)^(-k)) = 2.26910478689594012492... - Amiram Eldar, Sep 30 2020

A324588 Heinz numbers of integer partitions of n into perfect squares (A001156).

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 23, 28, 32, 46, 49, 53, 56, 64, 92, 97, 98, 106, 112, 128, 151, 161, 184, 194, 196, 212, 224, 227, 256, 302, 311, 322, 343, 368, 371, 388, 392, 419, 424, 448, 454, 512, 529, 541, 604, 622, 644, 661, 679, 686, 736, 742, 776, 784, 827, 838
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   7: {4}
   8: {1,1,1}
  14: {1,4}
  16: {1,1,1,1}
  23: {9}
  28: {1,1,4}
  32: {1,1,1,1,1}
  46: {1,9}
  49: {4,4}
  53: {16}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  92: {1,1,9}
  97: {25}
  98: {1,4,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],And@@Cases[FactorInteger[#],{p_,_}:>IntegerQ[Sqrt[PrimePi[p]]]]&]

A325129 Heinz numbers of integer partitions into nonsquares (A087153).

Original entry on oeis.org

1, 3, 5, 9, 11, 13, 15, 17, 19, 25, 27, 29, 31, 33, 37, 39, 41, 43, 45, 47, 51, 55, 57, 59, 61, 65, 67, 71, 73, 75, 79, 81, 83, 85, 87, 89, 93, 95, 99, 101, 103, 107, 109, 111, 113, 117, 121, 123, 125, 127, 129, 131, 135, 137, 139, 141, 143, 145, 149, 153, 155
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  19: {8}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  37: {12}
  39: {2,6}
  41: {13}
  43: {14}
  45: {2,2,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!MemberQ[If[#==1,{},FactorInteger[#]],{p_,_}/;IntegerQ[Sqrt[PrimePi[p]]]]&]
Showing 1-8 of 8 results.