A087153 Number of partitions of n into nonsquares.
1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 9, 13, 15, 20, 24, 30, 37, 47, 55, 71, 83, 103, 123, 151, 178, 218, 257, 310, 366, 440, 515, 617, 722, 857, 1003, 1184, 1380, 1625, 1889, 2214, 2570, 3000, 3472, 4042, 4669, 5414, 6244, 7221, 8303, 9583, 10998, 12655, 14502
Offset: 0
Keywords
Examples
n=7: 2+5 = 2+2+3 = 7: a(7)=3; n=8: 2+6 = 2+2+2+2 = 2+3+3 = 3+5 = 8: a(8)=5; n=9: 2+7 = 2+2+5 = 2+2+2+3 = 3+3+3 = 3+6: a(9)=5.
References
- G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. See page 48.
Links
- T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Daniel I. A. Cohen, PIE-sums: a combinatorial tool for partition theory. J. Combin. Theory Ser. A 31 (1981), no. 3, 223--236. MR0635367 (82m:10026). See Cor. 5. - _N. J. A. Sloane_, Mar 27 2012
- James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
Crossrefs
Programs
-
Haskell
a087153 = p a000037_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Apr 25 2013
-
Maple
g:=product((1-x^(i^2))/(1-x^i),i=1..70):gser:=series(g,x=0,60):seq(coeff(gser,x^n),n=1..53); # Emeric Deutsch, Feb 09 2006
-
Mathematica
nn=54; CoefficientList[ Series[ Product[ Sum[x^(i*j), {j, 0, i - 1}], {i, 1, nn}], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 05 2004 *) nmax = 100; CoefficientList[Series[Product[(1 - x^(k^2))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)
-
PARI
first(n)=my(x='x+O('x^(n+1))); Vec(prod(m=1,sqrtint(n), (1-x^m^2)/(1-x^m))*prod(m=sqrtint(n)+1,n,1/(1-x^m))) \\ Charles R Greathouse IV, Aug 28 2016
Formula
G.f.: Product_{m>0} (1-x^(m^2))/(1-x^m). - Vladeta Jovovic, Aug 21 2003
G.f.: Product_{i>=1} (Sum_{j=0..i-1} x^(i*j)). - Jon Perry, Jul 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) * sqrt(Pi) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016
Extensions
Zeroth term added by Franklin T. Adams-Watters, Jan 25 2010
Comments