cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A302796 Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 42, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 78, 82, 85, 86, 93, 94, 95, 102, 105, 106, 110, 114, 118, 119, 122, 123, 130, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 174, 177, 178, 182
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
42 : {1,2,4}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&]
  • PARI
    isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ Michel Marcus, Apr 13 2018

A302797 Squarefree numbers whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions with pairwise coprime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 82, 85, 86, 93, 94, 95, 102, 106, 110, 118, 119, 122, 123, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 177, 178, 186, 187, 190, 194, 201, 202
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
69 : {2,9}
70 : {1,3,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]]&]

A302568 Odd numbers that are either prime or whose prime indices are pairwise coprime.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173, 177, 179
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

Also Heinz numbers of partitions with pairwise coprime parts all greater than 1 (A007359), where singletons are considered coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}       43: {14}      89: {24}      141: {2,15}
      5: {3}       47: {15}      93: {2,11}    143: {5,6}
      7: {4}       51: {2,7}     95: {3,8}     145: {3,10}
     11: {5}       53: {16}      97: {25}      149: {35}
     13: {6}       55: {3,5}    101: {26}      151: {36}
     15: {2,3}     59: {17}     103: {27}      155: {3,11}
     17: {7}       61: {18}     107: {28}      157: {37}
     19: {8}       67: {19}     109: {29}      161: {4,9}
     23: {9}       69: {2,9}    113: {30}      163: {38}
     29: {10}      71: {20}     119: {4,7}     165: {2,3,5}
     31: {11}      73: {21}     123: {2,13}    167: {39}
     33: {2,5}     77: {4,5}    127: {31}      173: {40}
     35: {3,4}     79: {22}     131: {32}      177: {2,17}
     37: {12}      83: {23}     137: {33}      179: {41}
     41: {13}      85: {3,7}    139: {34}      181: {42}
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
03: {{1}}
05: {{2}}
07: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
53: {{1,1,1,1}}
		

Crossrefs

A005117 is a superset.
A007359 counts partitions with these Heinz numbers.
A302569 allows evens, with squarefree version A302798.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A337984 does not include the primes.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]

Formula

Equals A065091 \/ A337984.
Equals A302569 /\ A005408.

Extensions

Extended by Gus Wiseman, Oct 29 2020

A338331 Numbers whose set of distinct prime indices (A304038) is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions whose set of distinct parts is a singleton or pairwise coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          16: {1,1,1,1}     32: {1,1,1,1,1}
      2: {1}         17: {7}           33: {2,5}
      3: {2}         18: {1,2,2}       34: {1,7}
      4: {1,1}       19: {8}           35: {3,4}
      5: {3}         20: {1,1,3}       36: {1,1,2,2}
      6: {1,2}       22: {1,5}         37: {12}
      7: {4}         23: {9}           38: {1,8}
      8: {1,1,1}     24: {1,1,1,2}     40: {1,1,1,3}
      9: {2,2}       25: {3,3}         41: {13}
     10: {1,3}       26: {1,6}         43: {14}
     11: {5}         27: {2,2,2}       44: {1,1,5}
     12: {1,1,2}     28: {1,1,4}       45: {2,2,3}
     13: {6}         29: {10}          46: {1,9}
     14: {1,4}       30: {1,2,3}       47: {15}
     15: {2,3}       31: {11}          48: {1,1,1,1,2}
		

Crossrefs

A302798 is the squarefree case.
A304709 counts partitions with pairwise coprime distinct parts, with ordered version A337665 and Heinz numbers A304711.
A304711 does not consider singletons relatively prime, except for (1).
A304712 counts the partitions with these Heinz numbers.
A316476 is the version for indivisibility instead of relative primality.
A328867 is the pairwise non-coprime instead of pairwise coprime version.
A337600 counts triples of this type, with ordered version A337602.
A338330 is the complement.
A000961 lists powers of primes.
A051424 counts pairwise coprime or singleton partitions.
A304038 gives the distinct prime indices of each positive integer.
A327516 counts pairwise coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Select[Range[100],#==1||PrimePowerQ[#]||CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

Equals A304711 \/ A000961.

A338317 Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0

Views

Author

Gus Wiseman, Oct 24 2020

Keywords

Examples

			The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
  2   3   4    5    6     7     8      9      A       B       C
          22   32   33    43    44     54     55      65      66
                    222   52    53     72     73      74      75
                          322   332    333    433     83      444
                                2222   522    532     92      543
                                       3222   3322    443     552
                                              22222   533     732
                                                      722     3333
                                                      3332    5322
                                                      5222    33222
                                                      32222   222222
		

Crossrefs

A007359 (A302568) gives the strict case.
A101268 (A335235) gives pairwise coprime or singleton compositions.
A200976 (A338318) gives the pairwise non-coprime instead of coprime version.
A304709 (A304711) gives partitions whose distinct parts are pairwise coprime, with strict case A305713 (A302797).
A304712 (A338331) allows 1's, with strict version A007360 (A302798).
A327516 (A302696) gives pairwise coprime partitions.
A328673 (A328867) gives partitions with no distinct relatively prime parts.
A338315 (A337987) does not consider singletons coprime.
A338317 (A338316) gives these partitions.
A337462 (A333227) gives pairwise coprime compositions.
A337485 (A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (A333228) gives compositions with pairwise coprime distinct parts.
A337667 (A337666) gives pairwise non-coprime compositions.
A337697 (A022340 /\ A333227) = pairwise coprime compositions with no 1's.
A337983 (A337696) gives pairwise non-coprime strict compositions, with unordered version A318717 (A318719).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]

Formula

The Heinz numbers of these partitions are given by A338316. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

A338468 Odd squarefree numbers whose prime indices have no common divisor > 1.

Original entry on oeis.org

15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 205, 209, 215, 217, 219, 221, 231, 249, 253, 255, 265, 285, 287, 291, 295, 309, 323, 327, 329, 335, 341, 345, 355, 357, 381, 385, 391, 395, 403, 407, 411
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of relatively prime strict integer partitions with no 1's (A337452). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}      145: {3,10}     249: {2,23}     355: {3,20}
     33: {2,5}      155: {3,11}     253: {5,9}      357: {2,4,7}
     35: {3,4}      161: {4,9}      255: {2,3,7}    381: {2,31}
     51: {2,7}      165: {2,3,5}    265: {3,16}     385: {3,4,5}
     55: {3,5}      177: {2,17}     285: {2,3,8}    391: {7,9}
     69: {2,9}      187: {5,7}      287: {4,13}     395: {3,22}
     77: {4,5}      195: {2,3,6}    291: {2,25}     403: {6,11}
     85: {3,7}      201: {2,19}     295: {3,17}     407: {5,12}
     93: {2,11}     205: {3,13}     309: {2,27}     411: {2,33}
     95: {3,8}      209: {5,8}      323: {7,8}      413: {4,17}
    105: {2,3,4}    215: {3,14}     327: {2,29}     415: {3,23}
    119: {4,7}      217: {4,11}     329: {4,15}     429: {2,5,6}
    123: {2,13}     219: {2,21}     335: {3,19}     435: {2,3,10}
    141: {2,15}     221: {6,7}      341: {5,11}     437: {8,9}
    143: {5,6}      231: {2,4,5}    345: {2,3,9}    447: {2,35}
		

Crossrefs

A302568 is the prime or pairwise coprime version, counted by A007359.
A302697 is not required to be squarefree, counted by A302698 (ordered version: A337450).
A302796 allows evens, counted by A078374 (ordered version: A332004).
A337452 counts partitions with these Heinz numbers (ordered version: A337451).
A337984 is the pairwise coprime version, counted by A337485 (ordered version: A337697).
A005117 lists squarefree numbers.
A005408 lists odd numbers.
A056911 lists odd squarefree numbers.
A289509 lists Heinz numbers of relatively prime partitions, counted by A000837 (ordered version: A000740).

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&GCD@@PrimePi/@First/@FactorInteger[#]==1&]

A327905 FDH numbers of pairwise coprime sets.

Original entry on oeis.org

2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 55, 56, 57, 58, 62, 63, 66, 68, 70, 74, 75, 76, 77, 80, 82, 84, 86, 88, 91, 93, 94, 95, 96, 98, 99, 100, 104, 106, 110, 112, 114, 116, 118, 122, 123, 125, 126, 132
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict partition or finite set {y_1,...,y_k} is f(y_1)*...*f(y_k).
We use the Mathematica function CoprimeQ, meaning a singleton is not coprime unless it is {1}.

Examples

			The sequence of terms together with their corresponding coprime sets begins:
   2: {1}
   6: {1,2}
   8: {1,3}
  10: {1,4}
  12: {2,3}
  14: {1,5}
  18: {1,6}
  20: {3,4}
  21: {2,5}
  22: {1,7}
  24: {1,2,3}
  26: {1,8}
  28: {3,5}
  32: {1,9}
  33: {2,7}
  34: {1,10}
  35: {4,5}
  38: {1,11}
  40: {1,3,4}
  42: {1,2,5}
		

Crossrefs

Heinz numbers of pairwise coprime partitions are A302696 (all), A302797 (strict), A302569 (with singletons), and A302798 (strict with singletons).
FDH numbers of relatively prime sets are A319827.

Programs

  • Mathematica
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=100;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
Showing 1-7 of 7 results.