A302796
Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.
Original entry on oeis.org
1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 42, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 78, 82, 85, 86, 93, 94, 95, 102, 105, 106, 110, 114, 118, 119, 122, 123, 130, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 174, 177, 178, 182
Offset: 1
Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
42 : {1,2,4}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
Cf.
A001222,
A003963,
A005117,
A007359,
A051424,
A056239,
A275024,
A289509,
A302242,
A302505,
A302696,
A302697,
A302698,
A302797,
A302798.
-
Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&]
-
isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ Michel Marcus, Apr 13 2018
A302797
Squarefree numbers whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions with pairwise coprime parts.
Original entry on oeis.org
1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 82, 85, 86, 93, 94, 95, 102, 106, 110, 118, 119, 122, 123, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 177, 178, 186, 187, 190, 194, 201, 202
Offset: 1
Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
69 : {2,9}
70 : {1,3,4}
Cf.
A001222,
A003963,
A005117,
A007359,
A051424,
A056239,
A275024,
A289509,
A302242,
A302505,
A302696,
A302697,
A302698,
A302796,
A302798.
A302568
Odd numbers that are either prime or whose prime indices are pairwise coprime.
Original entry on oeis.org
3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173, 177, 179
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 43: {14} 89: {24} 141: {2,15}
5: {3} 47: {15} 93: {2,11} 143: {5,6}
7: {4} 51: {2,7} 95: {3,8} 145: {3,10}
11: {5} 53: {16} 97: {25} 149: {35}
13: {6} 55: {3,5} 101: {26} 151: {36}
15: {2,3} 59: {17} 103: {27} 155: {3,11}
17: {7} 61: {18} 107: {28} 157: {37}
19: {8} 67: {19} 109: {29} 161: {4,9}
23: {9} 69: {2,9} 113: {30} 163: {38}
29: {10} 71: {20} 119: {4,7} 165: {2,3,5}
31: {11} 73: {21} 123: {2,13} 167: {39}
33: {2,5} 77: {4,5} 127: {31} 173: {40}
35: {3,4} 79: {22} 131: {32} 177: {2,17}
37: {12} 83: {23} 137: {33} 179: {41}
41: {13} 85: {3,7} 139: {34} 181: {42}
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
03: {{1}}
05: {{2}}
07: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
53: {{1,1,1,1}}
A007359 counts partitions with these Heinz numbers.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A337984 does not include the primes.
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337697 counts pairwise coprime compositions with no 1's.
Cf.
A005408,
A051424,
A056239,
A087087,
A112798,
A200976,
A302797,
A303282,
A304711,
A335235,
A338468.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
A338331
Numbers whose set of distinct prime indices (A304038) is pairwise coprime, where a singleton is always considered coprime.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 16: {1,1,1,1} 32: {1,1,1,1,1}
2: {1} 17: {7} 33: {2,5}
3: {2} 18: {1,2,2} 34: {1,7}
4: {1,1} 19: {8} 35: {3,4}
5: {3} 20: {1,1,3} 36: {1,1,2,2}
6: {1,2} 22: {1,5} 37: {12}
7: {4} 23: {9} 38: {1,8}
8: {1,1,1} 24: {1,1,1,2} 40: {1,1,1,3}
9: {2,2} 25: {3,3} 41: {13}
10: {1,3} 26: {1,6} 43: {14}
11: {5} 27: {2,2,2} 44: {1,1,5}
12: {1,1,2} 28: {1,1,4} 45: {2,2,3}
13: {6} 29: {10} 46: {1,9}
14: {1,4} 30: {1,2,3} 47: {15}
15: {2,3} 31: {11} 48: {1,1,1,1,2}
A304709 counts partitions with pairwise coprime distinct parts, with ordered version
A337665 and Heinz numbers
A304711.
A304711 does not consider singletons relatively prime, except for (1).
A304712 counts the partitions with these Heinz numbers.
A316476 is the version for indivisibility instead of relative primality.
A328867 is the pairwise non-coprime instead of pairwise coprime version.
A051424 counts pairwise coprime or singleton partitions.
A304038 gives the distinct prime indices of each positive integer.
A327516 counts pairwise coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
Cf.
A000837,
A047968,
A056239,
A112798,
A289509,
A302797,
A305148,
A318716,
A318719,
A337664,
A337695.
A338317
Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
2 3 4 5 6 7 8 9 A B C
22 32 33 43 44 54 55 65 66
222 52 53 72 73 74 75
322 332 333 433 83 444
2222 522 532 92 543
3222 3322 443 552
22222 533 732
722 3333
3332 5322
5222 33222
32222 222222
A200976 (
A338318) gives the pairwise non-coprime instead of coprime version.
A328673 (
A328867) gives partitions with no distinct relatively prime parts.
A337485 (
A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (
A333228) gives compositions with pairwise coprime distinct parts.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]
A338468
Odd squarefree numbers whose prime indices have no common divisor > 1.
Original entry on oeis.org
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 205, 209, 215, 217, 219, 221, 231, 249, 253, 255, 265, 285, 287, 291, 295, 309, 323, 327, 329, 335, 341, 345, 355, 357, 381, 385, 391, 395, 403, 407, 411
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 145: {3,10} 249: {2,23} 355: {3,20}
33: {2,5} 155: {3,11} 253: {5,9} 357: {2,4,7}
35: {3,4} 161: {4,9} 255: {2,3,7} 381: {2,31}
51: {2,7} 165: {2,3,5} 265: {3,16} 385: {3,4,5}
55: {3,5} 177: {2,17} 285: {2,3,8} 391: {7,9}
69: {2,9} 187: {5,7} 287: {4,13} 395: {3,22}
77: {4,5} 195: {2,3,6} 291: {2,25} 403: {6,11}
85: {3,7} 201: {2,19} 295: {3,17} 407: {5,12}
93: {2,11} 205: {3,13} 309: {2,27} 411: {2,33}
95: {3,8} 209: {5,8} 323: {7,8} 413: {4,17}
105: {2,3,4} 215: {3,14} 327: {2,29} 415: {3,23}
119: {4,7} 217: {4,11} 329: {4,15} 429: {2,5,6}
123: {2,13} 219: {2,21} 335: {3,19} 435: {2,3,10}
141: {2,15} 221: {6,7} 341: {5,11} 437: {8,9}
143: {5,6} 231: {2,4,5} 345: {2,3,9} 447: {2,35}
A337452 counts partitions with these Heinz numbers (ordered version:
A337451).
A056911 lists odd squarefree numbers.
A289509 lists Heinz numbers of relatively prime partitions, counted by
A000837 (ordered version:
A000740).
Cf.
A000010,
A007359,
A051424,
A055684,
A056239,
A101268,
A289508,
A302505,
A302569,
A302696,
A302798,
A337694.
A327905
FDH numbers of pairwise coprime sets.
Original entry on oeis.org
2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 55, 56, 57, 58, 62, 63, 66, 68, 70, 74, 75, 76, 77, 80, 82, 84, 86, 88, 91, 93, 94, 95, 96, 98, 99, 100, 104, 106, 110, 112, 114, 116, 118, 122, 123, 125, 126, 132
Offset: 1
The sequence of terms together with their corresponding coprime sets begins:
2: {1}
6: {1,2}
8: {1,3}
10: {1,4}
12: {2,3}
14: {1,5}
18: {1,6}
20: {3,4}
21: {2,5}
22: {1,7}
24: {1,2,3}
26: {1,8}
28: {3,5}
32: {1,9}
33: {2,7}
34: {1,10}
35: {4,5}
38: {1,11}
40: {1,3,4}
42: {1,2,5}
- Wolfram Language Documentation, CoprimeQ
Heinz numbers of pairwise coprime partitions are
A302696 (all),
A302797 (strict),
A302569 (with singletons), and
A302798 (strict with singletons).
FDH numbers of relatively prime sets are
A319827.
-
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
nn=100;FDprimeList=Array[FDfactor,nn,1,Union];
FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
Showing 1-7 of 7 results.
Comments