A302698
Number of integer partitions of n into relatively prime parts that are all greater than 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 13, 7, 23, 18, 32, 33, 65, 50, 104, 92, 148, 153, 252, 226, 376, 376, 544, 570, 846, 821, 1237, 1276, 1736, 1869, 2552, 2643, 3659, 3887, 5067, 5509, 7244, 7672, 10086, 10909, 13756, 15168, 19195, 20735, 26237, 28708, 35418, 39207
Offset: 1
The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
(32) . (43) (53) (54) (73) (65) (75)
(52) (332) (72) (433) (74) (543)
(322) (432) (532) (83) (552)
(522) (3322) (92) (732)
(3222) (443) (4332)
(533) (5322)
(542) (33222)
(632)
(722)
(3332)
(4322)
(5222)
(32222)
A000837 is the version allowing 1's.
A002865 does not require relative primality.
A302697 gives the Heinz numbers of these partitions.
A337451 is the ordered strict version.
A337485 is the pairwise coprime instead of relatively prime version.
A000740 counts relatively prime compositions.
A078374 counts relatively prime strict partitions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A332004 counts strict relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
-
b:= proc(n, i, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
`if`(i<2, 0, b(n, i-1, g)+b(n-i, min(n-i, i), igcd(g, i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..60); # Alois P. Heinz, Apr 12 2018
-
Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&GCD@@#===1&]],{n,30}]
(* Second program: *)
b[n_, i_, g_] := b[n, i, g] = If[n == 0, If[g == 1, 1, 0], If[i < 2, 0, b[n, i - 1, g] + b[n - i, Min[n - i, i], GCD[g, i]]]];
a[n_] := b[n, n, 0];
Array[a, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A302568
Odd numbers that are either prime or whose prime indices are pairwise coprime.
Original entry on oeis.org
3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173, 177, 179
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 43: {14} 89: {24} 141: {2,15}
5: {3} 47: {15} 93: {2,11} 143: {5,6}
7: {4} 51: {2,7} 95: {3,8} 145: {3,10}
11: {5} 53: {16} 97: {25} 149: {35}
13: {6} 55: {3,5} 101: {26} 151: {36}
15: {2,3} 59: {17} 103: {27} 155: {3,11}
17: {7} 61: {18} 107: {28} 157: {37}
19: {8} 67: {19} 109: {29} 161: {4,9}
23: {9} 69: {2,9} 113: {30} 163: {38}
29: {10} 71: {20} 119: {4,7} 165: {2,3,5}
31: {11} 73: {21} 123: {2,13} 167: {39}
33: {2,5} 77: {4,5} 127: {31} 173: {40}
35: {3,4} 79: {22} 131: {32} 177: {2,17}
37: {12} 83: {23} 137: {33} 179: {41}
41: {13} 85: {3,7} 139: {34} 181: {42}
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
03: {{1}}
05: {{2}}
07: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
53: {{1,1,1,1}}
A007359 counts partitions with these Heinz numbers.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A337984 does not include the primes.
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337697 counts pairwise coprime compositions with no 1's.
Cf.
A005408,
A051424,
A056239,
A087087,
A112798,
A200976,
A302797,
A303282,
A304711,
A335235,
A338468.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
A338333
Number of relatively prime 3-part strict integer partitions of n with no 1's.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 8, 14, 12, 18, 16, 24, 18, 30, 25, 34, 30, 44, 31, 52, 42, 56, 49, 69, 50, 80, 64, 83, 70, 102, 71, 114, 90, 112, 100, 140, 98, 153, 117, 153, 132, 184, 128, 195, 154, 196, 169, 234, 156, 252, 196, 241
Offset: 0
The a(9) = 1 through a(19) = 14 triples (A = 10, B = 11, C = 12, D = 13, E = 14):
432 532 542 543 643 653 654 754 764 765 865
632 732 652 743 753 763 854 873 874
742 752 762 853 863 954 964
832 932 843 943 872 972 973
852 952 953 A53 982
942 B32 962 B43 A54
A32 A43 B52 A63
A52 D32 A72
B42 B53
C32 B62
C43
C52
D42
E32
A001399(n-9) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A337452 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A337605 is the pairwise non-coprime instead of relative prime version.
A338332 is the not necessarily strict version.
A000837 counts relatively prime partitions.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A101271 counts 3-part relatively prime strict partitions.
A220377 counts 3-part pairwise coprime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
-
Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]
Showing 1-3 of 3 results.
Comments