A338315 Number of integer partitions of n with no 1's whose distinct parts are pairwise coprime, where a singleton is not considered coprime unless it is (1).
0, 0, 0, 0, 0, 1, 0, 3, 2, 4, 4, 10, 6, 15, 13, 16, 21, 31, 29, 43, 41, 50, 63, 79, 81, 99, 113, 129, 145, 179, 197, 228, 249, 284, 328, 363, 418, 472, 522, 581, 655, 741, 828, 921, 1008, 1123, 1259, 1407, 1546, 1709, 1889, 2077, 2292, 2554, 2799, 3061, 3369
Offset: 0
Keywords
Examples
The a(5) = 1 through a(13) = 15 partitions (empty column indicated by dot, A = 10, B = 11): 32 . 43 53 54 73 65 75 76 52 332 72 433 74 543 85 322 522 532 83 552 94 3222 3322 92 732 A3 443 5322 B2 533 33222 544 722 553 3332 733 5222 922 32222 4333 5332 7222 33322 52222 322222
Crossrefs
A200976 is a pairwise non-coprime instead of pairwise coprime version.
A318717 counts pairwise non-coprime strict partitions.
A337987 gives the Heinz numbers of these partitions.
A007359 counts singleton or pairwise coprime partitions with no 1's.
A328673 counts partitions with no two distinct parts relatively prime.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337697 counts pairwise coprime compositions with no 1's.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@Union[#]&]],{n,0,30}]
Comments