A355740 Numbers of which it is not possible to choose a different divisor of each prime index.
4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 50, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 4: {1,1} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 24: {1,1,1,2} 27: {2,2,2} 28: {1,1,4} 32: {1,1,1,1,1} 36: {1,1,2,2} 40: {1,1,1,3} 44: {1,1,5} 48: {1,1,1,1,2} For example, the choices of a divisor of each prime index of 90 are: (1,1,1,1), (1,1,1,3), (1,1,2,1), (1,1,2,3), (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3). But none of these has all distinct elements, so 90 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Cartesian product.
Crossrefs
Programs
-
Maple
filter:= proc(n) uses numtheory, GraphTheory; local B, S, F, D, E, G, t, d; F:= ifactors(n)[2]; F:= map(t -> [pi(t[1]), t[2]], F); D:= `union`(seq(divisors(t[1]), t = F)); F:= map(proc(t) local i; seq([t[1], i], i=1..t[2]) end proc, F); if nops(D) < nops(F) then return false fi; E:= {seq(seq({t, d}, d=divisors(t[1])), t = F)}; S:= map(t -> convert(t, name), [op(F), op(D)]); E:= map(e -> map(convert, e, name), E); G:= Graph(S, E); B:= BipartiteMatching(G); B[1] = nops(F); end proc: remove(filter, [$1..200]); # Robert Israel, Feb 15 2024
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Select[Tuples[Divisors/@primeMS[#]],UnsameQ@@#&]=={}&]
Comments