A370406 Primitive terms of A370348.
4, 18, 27, 50, 125, 225, 242, 294, 441, 578, 686, 1029, 1089, 1331, 1922, 2401, 2601, 3025, 3362, 3675, 4913, 5070, 5290, 6962, 7225, 7605, 8575, 8649, 8978, 12675, 13182, 13225, 13778, 15129, 15162, 17787, 19773, 21970, 22743, 23762, 23805, 24025, 24334, 29791, 31329, 32258, 32955, 34969, 35378
Offset: 1
Keywords
Examples
a(4) = 50 is a term because the prime indices of 50 = 2*5^2 are 1, 2, 2, and there are 3 of these but only 2 divisors of prime indices, namely 1 and 2, and 50 is not divisible by any of the previous terms 4, 18 and 27 of the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..800
Programs
-
Maple
filter:= proc(n) uses numtheory; local F,D,t; if ormap(t -> n mod t = 0, S) then return false fi; F:= map(t -> [pi(t[1]), t[2]], ifactors(n)[2]); D:= `union`(seq(divisors(t[1]), t = F); nops(D) < add(t[2], t = F); end proc: R:= NULL: count:= 0: S:= {}: for n from 1 while count < 100 do if filter(n) then R:= R, n; S:= S union {n}; count:= count+1; fi od: R;
-
Mathematica
filter[n_] := Module[{F, d}, If[AnyTrue[S, Mod[n, #] == 0&], Return[False]]; F = {PrimePi[#[[1]]], #[[2]]} & /@ FactorInteger[n]; d = Union[Flatten[Divisors /@ F[[All, 1]]]]; Length[d] < Total[F[[All, 2]]]]; R = {}; count = 0; S = {}; For[n = 1, count < 100, n++, If[filter[n], AppendTo[R, n]; S = Union[S, {n}]; count++]]; R (* Jean-François Alcover, Mar 08 2024, after Robert Israel *)
Comments