A327525 Number of factorizations of A302569(n), the n-th number that is 1, prime, or whose prime indices are pairwise coprime.
1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 4, 1, 2, 2, 5, 1, 1, 4, 2, 1, 7, 2, 4, 1, 5, 1, 7, 2, 2, 2, 1, 2, 7, 1, 1, 4, 2, 1, 12, 2, 4, 1, 2, 7, 2, 1, 11, 1, 2, 11, 5, 1, 4, 2, 5, 1, 1, 2, 4, 2, 1, 12, 2, 1, 2, 2, 7, 1, 4, 2, 2, 2, 19, 1, 1, 5, 1, 7, 2, 1, 1, 5, 12, 1, 4
Offset: 1
Keywords
Examples
The a(47) = 11 factorizations of 60 together with the corresponding multiset partitions of {1,1,2,3}: (2*2*3*5) {{1},{1},{2},{3}} (2*2*15) {{1},{1},{2,3}} (2*3*10) {{1},{2},{1,3}} (2*5*6) {{1},{3},{1,2}} (2*30) {{1},{1,2,3}} (3*4*5) {{2},{1,1},{3}} (3*20) {{2},{1,1,3}} (4*15) {{1,1},{2,3}} (5*12) {{3},{1,1,2}} (6*10) {{1,2},{1,3}} (60) {{1,1,2,3}}
Links
Crossrefs
Programs
-
Mathematica
nn=100; facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; y=Select[Range[nn],PrimeQ[#]||CoprimeQ@@primeMS[#]&]; Table[Length[facsusing[Rest[y],n]],{n,y}]
Comments