A327518 Number of factorizations of A302696(n), the n-th number that is 1, 2, or a nonprime number with pairwise coprime prime indices, into factors > 1 satisfying the same conditions.
1, 1, 2, 1, 3, 1, 2, 1, 1, 5, 2, 1, 4, 1, 2, 2, 7, 1, 1, 1, 1, 4, 2, 1, 7, 1, 2, 1, 4, 1, 5, 1, 11, 2, 2, 1, 2, 1, 2, 1, 7, 1, 1, 1, 4, 2, 1, 1, 1, 12, 2, 4, 1, 2, 7, 2, 1, 1, 10, 1, 1, 2, 15, 5, 1, 4, 2, 5, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 12, 1, 2, 1, 1, 2, 2
Offset: 1
Keywords
Examples
The a(59) = 10 factorizations of 120 using the allowed factors, together with the corresponding multiset partitions of {1,1,1,2,3}: (2*2*2*15) {{1},{1},{1},{2,3}} (2*2*30) {{1},{1},{1,2,3}} (2*4*15) {{1},{1,1},{2,3}} (2*6*10) {{1},{1,2},{1,3}} (2*60) {{1},{1,1,2,3}} (4*30) {{1,1},{1,2,3}} (6*20) {{1,2},{1,1,3}} (8*15) {{1,1,1},{2,3}} (10*12) {{1,3},{1,1,2}} (120) {{1,1,1,2,3}}
Links
Crossrefs
Programs
-
Mathematica
nn=100; facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; y=Select[Range[nn],#==1||CoprimeQ@@primeMS[#]&]; Table[Length[facsusing[Rest[y],n]],{n,y}]
Comments