cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A336620 Numbers that are not a product of elements of A304711.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 42, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 78, 79, 81, 83, 87, 89, 91, 97, 101, 103, 105, 107, 109, 111, 113, 114, 115, 117, 121, 125, 126, 127, 129, 130, 131, 133, 137, 139, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2020

Keywords

Comments

A304711 lists numbers whose distinct prime indices are pairwise coprime.
The first term divisible by 4 is a(421) = 1092.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         39: {2,6}       78: {1,2,6}
      5: {3}         41: {13}        79: {22}
      7: {4}         42: {1,2,4}     81: {2,2,2,2}
      9: {2,2}       43: {14}        83: {23}
     11: {5}         47: {15}        87: {2,10}
     13: {6}         49: {4,4}       89: {24}
     17: {7}         53: {16}        91: {4,6}
     19: {8}         57: {2,8}       97: {25}
     21: {2,4}       59: {17}       101: {26}
     23: {9}         61: {18}       103: {27}
     25: {3,3}       63: {2,2,4}    105: {2,3,4}
     27: {2,2,2}     65: {3,6}      107: {28}
     29: {10}        67: {19}       109: {29}
     31: {11}        71: {20}       111: {2,12}
     37: {12}        73: {21}       113: {30}
		

Crossrefs

A336426 is the version for superprimorials, with complement A181818.
A336497 is the version for superfactorials, with complement A336496.
A336735 is the complement.
A000837 counts relatively prime partitions, with strict case A007360.
A001055 counts factorizations.
A302696 lists numbers with coprime prime indices.
A304711 lists numbers with coprime distinct prime indices.

Programs

  • Mathematica
    nn=100;
    dat=Select[Range[nn],CoprimeQ@@PrimePi/@First/@FactorInteger[#]&];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[nn],facsusing[dat,#]=={}&]

A336735 Products of elements of A304711.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2020

Keywords

Comments

A304711 lists numbers whose distinct prime indices are pairwise coprime.
First differs from A304711 in having 84.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            28: {1,1,4}         52: {1,1,6}
      2: {1}           30: {1,2,3}         54: {1,2,2,2}
      4: {1,1}         32: {1,1,1,1,1}     55: {3,5}
      6: {1,2}         33: {2,5}           56: {1,1,1,4}
      8: {1,1,1}       34: {1,7}           58: {1,10}
     10: {1,3}         35: {3,4}           60: {1,1,2,3}
     12: {1,1,2}       36: {1,1,2,2}       62: {1,11}
     14: {1,4}         38: {1,8}           64: {1,1,1,1,1,1}
     15: {2,3}         40: {1,1,1,3}       66: {1,2,5}
     16: {1,1,1,1}     44: {1,1,5}         68: {1,1,7}
     18: {1,2,2}       45: {2,2,3}         69: {2,9}
     20: {1,1,3}       46: {1,9}           70: {1,3,4}
     22: {1,5}         48: {1,1,1,1,2}     72: {1,1,1,2,2}
     24: {1,1,1,2}     50: {1,3,3}         74: {1,12}
     26: {1,6}         51: {2,7}           75: {2,3,3}
		

Crossrefs

A181818 is the version for superprimorials, with complement A336426.
A336496 is the version for superfactorials, with complement A336497.
A336620 is the complement.
A000837 counts relatively prime partitions, with strict case A007360.
A001055 counts factorizations.
A302696 lists numbers with coprime prime indices.
A304711 lists numbers with coprime distinct prime indices.

Programs

  • Mathematica
    nn=100;
    dat=Select[Range[nn],CoprimeQ@@PrimePi/@First/@FactorInteger[#]&];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[nn],facsusing[dat,#]!={}&]

A327516 Number of integer partitions of n that are empty, (1), or have at least two parts and these parts are pairwise coprime.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 11, 14, 17, 22, 26, 32, 37, 42, 50, 59, 69, 80, 91, 101, 115, 133, 152, 170, 190, 210, 235, 265, 300, 334, 366, 398, 441, 484, 541, 597, 648, 703, 770, 848, 935, 1022, 1102, 1184, 1281, 1406, 1534, 1661, 1789, 1916, 2062, 2244, 2435
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A302696.
Note that the definition excludes partitions with repeated parts other than 1 (cf. A038348, A304709).

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (11)  (21)   (31)    (32)     (51)      (43)       (53)
             (111)  (211)   (41)     (321)     (52)       (71)
                    (1111)  (311)    (411)     (61)       (431)
                            (2111)   (3111)    (511)      (521)
                            (11111)  (21111)   (3211)     (611)
                                     (111111)  (4111)     (5111)
                                               (31111)    (32111)
                                               (211111)   (41111)
                                               (1111111)  (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

A000837 is the relatively prime instead of pairwise coprime version.
A051424 includes all singletons, with strict case A007360.
A101268 is the ordered version (with singletons).
A302696 ranks these partitions, with complement A335241.
A305713 is the strict case.
A307719 counts these partitions of length 3.
A018783 counts partitions with a common divisor.
A328673 counts pairwise non-coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||CoprimeQ@@#&]],{n,0,30}]

Formula

For n > 1, a(n) = A051424(n) - 1. - Gus Wiseman, Sep 18 2020

A304713 Squarefree numbers whose prime indices are pairwise indivisible. Heinz numbers of strict integer partitions with pairwise indivisible parts.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of entries together with their corresponding multiset multisystems (see A302242) begins:
1:  {}
2:  {{}}
3:  {{1}}
5:  {{2}}
7:  {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],SquareFreeQ[#]&&Select[Tuples[PrimePi/@First/@FactorInteger[#],2],UnsameQ@@#&&Divisible@@#&]==={}&]

A259936 Number of ways to express the integer n as a product of its unitary divisors (A034444).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 5, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 5, 1, 2, 5
Offset: 1

Views

Author

Geoffrey Critzer, Jul 09 2015

Keywords

Comments

Equivalently, a(n) is the number of ways to express the cyclic group Z_n as a direct sum of its Hall subgroups. A Hall subgroup of a finite group G is a subgroup whose order is coprime to its index.
a(n) is the number of ways to partition the set of distinct prime factors of n.
Also the number of singleton or pairwise coprime factorizations of n. - Gus Wiseman, Sep 24 2019

Examples

			a(60) = 5 because we have: 60 = 4*3*5 = 4*15 = 3*20 = 5*12.
For n = 36, its unitary divisors are 1, 4, 9, 36. From these we obtain 36 either as 1*36 or 4*9, thus a(36) = 2. - _Antti Karttunen_, Oct 21 2017
		

Crossrefs

Differs from A050320 for the first time at n=36.
Differs from A354870 for the first time at n=210, where a(210) = 15, while A354870(210) = 12.
Related classes of factorizations:
- No conditions: A001055
- Strict: A045778
- Constant: A089723
- Distinct multiplicities: A255231
- Singleton or coprime: A259936
- Relatively prime: A281116
- Aperiodic: A303386
- Stable (indivisible): A305149
- Connected: A305193
- Strict relatively prime: A318721
- Uniform: A319269
- Intersecting: A319786
- Constant or distinct factors coprime: A327399
- Constant or relatively prime: A327400
- Coprime: A327517
- Not relatively prime: A327658
- Distinct factors coprime: A327695

Programs

  • Maple
    map(combinat:-bell @ nops @ numtheory:-factorset, [$1..100]); # Robert Israel, Jul 09 2015
  • Mathematica
    Table[BellB[PrimeNu[n]], {n, 1, 75}]
    (* second program *)
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[#]==1||CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Sep 24 2019 *)
  • PARI
    a(n) = my(t=omega(n), x='x, m=contfracpnqn(matrix(2, t\2, y, z, if( y==1, -z*x^2, 1 - (z+1)*x)))); polcoeff(1/(1 - x + m[2, 1]/m[1, 1]) + O(x^(t+1)), t) \\ Charles R Greathouse IV, Jun 30 2017

Formula

a(n) = A000110(A001221(n)).
a(n > 1) = A327517(n) + 1. - Gus Wiseman, Sep 24 2019

Extensions

Incorrect comment removed by Antti Karttunen, Jun 11 2022

A304709 Number of integer partitions of n whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 13, 16, 23, 29, 42, 49, 69, 83, 102, 126, 161, 191, 239, 281, 336, 402, 484, 566, 672, 787, 919, 1067, 1251, 1449, 1684, 1934, 2223, 2554, 2920, 3341, 3821, 4344, 4928, 5586, 6334, 7163, 8091, 9100, 10228, 11492, 12902, 14449, 16167, 18058
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.

Examples

			The a(6) = 7 integer partitions of 6 whose distinct parts are pairwise coprime are (51), (411), (321), (3111), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],CoprimeQ@@Union[#]&]//Length,{n,20}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sum(i=1, n-1, if(gcd(i,n)>1, 2^(n-i)))));
      my(c(n, m, b)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
      my(a(n)=c(n, n, 0) + 1 - numdiv(n));
      for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A304712(n) + 1 - A000005(n). - Andrew Howroyd, Nov 02 2019

A337603 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 9, 9, 18, 15, 24, 21, 42, 24, 51, 30, 54, 42, 93, 45, 102, 54, 99, 69, 162, 66, 150, 87, 168, 96, 264, 93, 228, 120, 246, 126, 336, 132, 315, 168, 342, 162, 486, 165, 420, 216, 411, 213, 618, 207, 558, 258, 540, 258, 783, 264, 654, 324, 660
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,3,3)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,5,1)  (1,3,4)
                    (2,1,2)  (1,4,1)  (2,2,3)  (1,4,3)
                    (2,2,1)  (2,1,3)  (2,3,2)  (1,5,2)
                    (3,1,1)  (2,3,1)  (3,1,3)  (1,6,1)
                             (3,1,2)  (3,2,2)  (2,1,5)
                             (3,2,1)  (3,3,1)  (2,3,3)
                             (4,1,1)  (5,1,1)  (2,5,1)
                                               (3,1,4)
                                               (3,2,3)
                                               (3,3,2)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A014311 intersected with A333228 ranks these compositions.
A220377*6 is the strict case.
A337461 is the strict case except for any number of 1's.
A337601 is the unordered version.
A337602 considers all singletons to be coprime.
A337665 counts these compositions of any length, ranked by A333228 with complement A335238.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A007318 and A097805 count compositions by length.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A304711 ranks partitions whose distinct parts are pairwise coprime.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions, with strict case A305713.
A333227 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

A337601 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 7, 10, 7, 11, 11, 17, 12, 19, 12, 19, 17, 29, 16, 28, 19, 31, 23, 46, 23, 42, 25, 45, 27, 59, 31, 57, 34, 61, 37, 84, 38, 75, 42, 74, 47, 107, 45, 98, 51, 96, 56, 135, 54, 115, 63, 117, 67, 174, 65, 139, 75, 144, 75, 194
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337600 at a(9) = 4, A337600(9) = 5.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  321  322  332  441  433  443  543  544  554
            311  411  331  431  522  532  533  552  553  743
                      511  521  531  541  551  651  661  752
                           611  711  721  722  732  733  761
                                     811  731  741  751  833
                                          911  831  922  851
                                               921  B11  941
                                               A11       A31
                                                         B21
                                                         C11
		

Crossrefs

A014612 intersected with A304711 ranks these partitions.
A220377 is the strict case.
A304709 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337600 considers singletons to be coprime.
A337603 is the ordered version.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337600(n) - A079978(n).

A302568 Odd numbers that are either prime or whose prime indices are pairwise coprime.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173, 177, 179
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

Also Heinz numbers of partitions with pairwise coprime parts all greater than 1 (A007359), where singletons are considered coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}       43: {14}      89: {24}      141: {2,15}
      5: {3}       47: {15}      93: {2,11}    143: {5,6}
      7: {4}       51: {2,7}     95: {3,8}     145: {3,10}
     11: {5}       53: {16}      97: {25}      149: {35}
     13: {6}       55: {3,5}    101: {26}      151: {36}
     15: {2,3}     59: {17}     103: {27}      155: {3,11}
     17: {7}       61: {18}     107: {28}      157: {37}
     19: {8}       67: {19}     109: {29}      161: {4,9}
     23: {9}       69: {2,9}    113: {30}      163: {38}
     29: {10}      71: {20}     119: {4,7}     165: {2,3,5}
     31: {11}      73: {21}     123: {2,13}    167: {39}
     33: {2,5}     77: {4,5}    127: {31}      173: {40}
     35: {3,4}     79: {22}     131: {32}      177: {2,17}
     37: {12}      83: {23}     137: {33}      179: {41}
     41: {13}      85: {3,7}    139: {34}      181: {42}
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
03: {{1}}
05: {{2}}
07: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
53: {{1,1,1,1}}
		

Crossrefs

A005117 is a superset.
A007359 counts partitions with these Heinz numbers.
A302569 allows evens, with squarefree version A302798.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A337984 does not include the primes.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]

Formula

Equals A065091 \/ A337984.
Equals A302569 /\ A005408.

Extensions

Extended by Gus Wiseman, Oct 29 2020

A304712 Number of integer partitions of n whose parts are all equal or whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 43, 54, 70, 86, 105, 130, 162, 196, 240, 286, 339, 405, 485, 573, 674, 790, 922, 1072, 1252, 1456, 1685, 1939, 2226, 2557, 2923, 3349, 3822, 4347, 4931, 5593, 6335, 7170, 8092, 9105, 10233, 11495, 12903, 14458, 16169, 18063
Offset: 0

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1.

Examples

			The a(6) = 10 partitions whose parts are all equal or whose distinct parts are pairwise coprime are (6), (51), (411), (33), (321), (3111), (222), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, s) `if`(n=0, 1, `if`(i<1, 0,
          b(n, i, select(x-> x<=i, s))))
        end:
    b:= proc(n, i, s) option remember; g(n, i-1, s)+(f->
         `if`(f intersect s={}, add(g(n-i*j, i-1, s union f)
            , j=1..n/i), 0))(numtheory[factorset](i))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[Select[IntegerPartitions[n],Or[SameQ@@#,CoprimeQ@@Union[#]]&]//Length,{n,20}]
    (* Second program: *)
    g[n_, i_, s_] := If[n == 0, 1, If[i < 1, 0, b[n, i, Select[s, # <= i &]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + Function[f,
         If[f ~Intersection~ s == {}, Sum[g[n - i*j, i - 1, s ~Union~ f],
         {j, 1, n/i}], 0]][FactorInteger[i][[All, 1]]];
    a[n_] := g[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Showing 1-10 of 32 results. Next