cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A000212 a(n) = floor(n^2/3).

Original entry on oeis.org

0, 0, 1, 3, 5, 8, 12, 16, 21, 27, 33, 40, 48, 56, 65, 75, 85, 96, 108, 120, 133, 147, 161, 176, 192, 208, 225, 243, 261, 280, 300, 320, 341, 363, 385, 408, 432, 456, 481, 507, 533, 560, 588, 616, 645, 675, 705, 736, 768, 800, 833, 867, 901, 936
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix of the following form: [3 2 1 0 0 0 0 0 0 0 / 2 3 2 1 0 0 0 0 0 0 / 1 2 3 2 1 0 0 0 0 0 / 0 1 2 3 2 1 0 0 0 0 / 0 0 1 2 3 2 1 0 0 0 / 0 0 0 1 2 3 2 1 0 0 / 0 0 0 0 1 2 3 2 1 0 / 0 0 0 0 0 1 2 3 2 1 / 0 0 0 0 0 0 1 2 3 2 / 0 0 0 0 0 0 0 1 2 3]. Then for n > 2 a(n) = det M_(n-2). - Benoit Cloitre, Jun 20 2002
Largest possible size for the directed Cayley graph on two generators having diameter n - 2. - Ralf Stephan, Apr 27 2003
It seems that for n >= 2, a(n) is the maximum number of non-overlapping 1 X 3 rectangles that can be packed into an n X n square. Rectangles can only be placed parallel to the sides of the square. Verified with Lobato's tool, see links. - Dmitry Kamenetsky, Aug 03 2009
Maximum number of edges in a K4-free graph with n vertices. - Yi Yang, May 23 2012
3a(n) + 1 = y^2 if n is not 0 mod 3 and 3a(n) = y^2 otherwise. - Jon Perry, Sep 10 2012
Apart from the initial term this is the elliptic troublemaker sequence R_n(1, 3) (also sequence R_n(2, 3)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a, b) see the cross references below. - Peter Bala, Aug 08 2013
The number of partitions of 2n into exactly 3 parts. - Colin Barker, Mar 22 2015
a(n-1) is the maximum number of non-overlapping triples (i,k), (i+1, k+1), (i+2, k+2) in an n X n matrix. Details: The triples are distributed along the main diagonal and 2*(n-1) other diagonals. Their maximum number is floor(n/3) + 2*Sum_{k = 1..n-1} floor(k/3) = floor((n-1)^2/3). - Gerhard Kirchner, Feb 04 2017
Conjecture: a(n) is the number of intersection points of n cevians that cut a triangle into the maximum number of pieces (see A007980). - Anton Zakharov, May 07 2017
From Gus Wiseman, Oct 05 2020: (Start)
Also the number of unimodal triples (meaning the middle part is not strictly less than both of the other two) of positive integers summing to n + 1. The a(2) = 1 through a(6) = 12 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,2,3) (1,2,4)
(2,1,1) (1,3,1) (1,3,2) (1,3,3)
(2,2,1) (1,4,1) (1,4,2)
(3,1,1) (2,2,2) (1,5,1)
(2,3,1) (2,2,3)
(3,2,1) (2,3,2)
(4,1,1) (2,4,1)
(3,2,2)
(3,3,1)
(4,2,1)
(5,1,1)
(End)

Examples

			G.f. = x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 21*x^8 + 27*x^9 + 33*x^10 + ...
From _Gus Wiseman_, Oct 07 2020: (Start)
The a(2) = 1 through a(6) = 12 partitions of 2*n into exactly 3 parts (Barker) are the following. The Heinz numbers of these partitions are given by the intersection of A014612 (triples) and A300061 (even sum).
  (2,1,1)  (2,2,2)  (3,3,2)  (4,3,3)  (4,4,4)
           (3,2,1)  (4,2,2)  (4,4,2)  (5,4,3)
           (4,1,1)  (4,3,1)  (5,3,2)  (5,5,2)
                    (5,2,1)  (5,4,1)  (6,3,3)
                    (6,1,1)  (6,2,2)  (6,4,2)
                             (6,3,1)  (6,5,1)
                             (7,2,1)  (7,3,2)
                             (8,1,1)  (7,4,1)
                                      (8,2,2)
                                      (8,3,1)
                                      (9,2,1)
                                      (10,1,1)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290, A007590 (= R_n(2,4)), A002620 (= R_n(1,2)), A118015, A056827, A118013.
Cf. A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444.
Cf. A001353 and A004523 (first differences). A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A238738. - Bruno Berselli, Apr 17 2015
Cf. A005408.
A000217(n-2) counts 3-part compositions.
A014612 ranks 3-part partitions, with strict case A007304.
A069905 counts the 3-part partitions.
A211540 counts strict 3-part partitions.
A337453 ranks strict 3-part compositions.
A001399(n-6)*4 is the strict version.
A001523 counts unimodal compositions, with strict case A072706.
A001840(n-4) is the non-unimodal version.
A001399(n-6)*2 is the strict non-unimodal version.
A007052 counts unimodal patterns.
A115981 counts non-unimodal compositions, ranked by A335373.
A011782 counts unimodal permutations.
A335373 is the complement of a ranking sequence for unimodal compositions.
A337459 ranks these compositions, with complement A337460.

Programs

  • Magma
    [Floor(n^2 / 3): n in [0..50]]; // Vincenzo Librandi, May 08 2011
    
  • Maple
    A000212:=(-1+z-2*z**2+z**3-2*z**4+z**5)/(z**2+z+1)/(z-1)**3; # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading 1.
    A000212 := proc(n) option remember; `if`(n<4, [0,0,1,3][n+1], a(n-1)+a(n-3) -a(n-4)+2) end; # Peter Luschny, Nov 20 2011
  • Mathematica
    Table[Quotient[n^2, 3], {n, 0, 59}] (* Michael Somos, Jan 22 2014 *)
  • PARI
    {a(n) = n^2 \ 3}; /* Michael Somos, Sep 25 2006 */
    
  • Python
    def A000212(n): return n**2//3 # Chai Wah Wu, Jun 07 2022

Formula

G.f.: x^2*(1+x)/((1-x)^2*(1-x^3)). - Franklin T. Adams-Watters, Apr 01 2002
Euler transform of length 3 sequence [ 3, -1, 1]. - Michael Somos, Sep 25 2006
G.f.: x^2 * (1 - x^2) / ((1 - x)^3 * (1 - x^3)). a(-n) = a(n). - Michael Somos, Sep 25 2006
a(n) = Sum_{k = 0..n} A011655(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = a(n-1) + a(n-3) - a(n-4) + 2 for n >= 4. - Alexander Burstein, Nov 20 2011
a(n) = a(n-3) + A005408(n-2) for n >= 3. - Alexander Burstein, Feb 15 2013
a(n) = (n-1)^2 - a(n-1) - a(n-2) for n >= 2. - Richard R. Forberg, Jun 05 2013
Sum_{n >= 2} 1/a(n) = (27 + 6*sqrt(3)*Pi + 2*Pi^2)/36. - Enrique Pérez Herrero, Jun 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = Sum_{k = 1..n} k^2*A049347(n+2-k). - Mircea Merca, Feb 04 2014
a(n) = Sum_{i = 1..n+1} (ceiling(i/3) + floor(i/3) - 1). - Wesley Ivan Hurt, Jun 06 2014
a(n) = Sum_{j = 1..n} Sum_{i=1..n} ceiling((i+j-n-1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Sum_{i = 1..n} floor(2*i/3). - Wesley Ivan Hurt, May 22 2017
a(-n) = a(n). - Paul Curtz, Jan 19 2020
a(n) = A001399(2*n - 3). - Gus Wiseman, Oct 07 2020
a(n) = (1/6)*(2*n^2 - 3 + gcd(n,3)). - Ridouane Oudra, Apr 15 2021
E.g.f.: (exp(x)*(-2 + 3*x*(1 + x)) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 24 2022
Sum_{n>=2} (-1)^n/a(n) = Pi/sqrt(3) - Pi^2/36 - 3/4. - Amiram Eldar, Dec 02 2022

Extensions

Edited by Charles R Greathouse IV, Apr 19 2010

A014311 Numbers with exactly 3 ones in binary expansion.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 131, 133, 134, 137, 138, 140, 145, 146, 148, 152, 161, 162, 164, 168, 176, 193, 194, 196, 200, 208, 224, 259, 261, 262, 265, 266, 268, 273, 274, 276, 280, 289, 290, 292, 296, 304
Offset: 1

Views

Author

Al Black (gblack(AT)nol.net)

Keywords

Comments

Equivalently, sums of three distinct powers of 2.
Appears to give all n such that 64 is the highest power of 2 dividing A005148(n). - Benoit Cloitre, Jun 22 2002
From Gus Wiseman, Oct 05 2020: (Start)
These are numbers k such that the k-th composition in standard order has length 3. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. The sequence together with the corresponding standard compositions begins:
7: (1,1,1) 44: (2,1,3) 97: (1,5,1)
11: (2,1,1) 49: (1,4,1) 98: (1,4,2)
13: (1,2,1) 50: (1,3,2) 100: (1,3,3)
14: (1,1,2) 52: (1,2,3) 104: (1,2,4)
19: (3,1,1) 56: (1,1,4) 112: (1,1,5)
21: (2,2,1) 67: (5,1,1) 131: (6,1,1)
22: (2,1,2) 69: (4,2,1) 133: (5,2,1)
25: (1,3,1) 70: (4,1,2) 134: (5,1,2)
26: (1,2,2) 73: (3,3,1) 137: (4,3,1)
28: (1,1,3) 74: (3,2,2) 138: (4,2,2)
35: (4,1,1) 76: (3,1,3) 140: (4,1,3)
37: (3,2,1) 81: (2,4,1) 145: (3,4,1)
38: (3,1,2) 82: (2,3,2) 146: (3,3,2)
41: (2,3,1) 84: (2,2,3) 148: (3,2,3)
42: (2,2,2) 88: (2,1,4) 152: (3,1,4)
(End)

Crossrefs

Cf. A038465 (base 3), A038471 (base 4), A038475 (base 5).
Cf. A081091 (primes), A212190 (squares), A212192 (triangular numbers), A173589 (Fibbinary).
Cf. A057168.
Cf. A000079, A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (Hammingweight = 1, 2, ..., 9).
A000217(n-2) counts compositions into three parts.
A001399(n-3) = A069905(n) = A211540(n+2) counts the unordered case.
A001399(n-6) = A069905(n-3) = A211540(n-1) counts the unordered strict case.
A001399(n-6)*6 = A069905(n-3)*6 = A211540(n-1)*6 counts the strict case.
A014612 is an unordered version, with strict case A007304.
A337453 is the strict case.
A337461 counts the coprime case.
A033992 lists numbers divisible by exactly three different primes.
A323024 lists numbers with exactly three different prime multiplicities.

Programs

  • C
    unsigned hakmem175(unsigned x) {
        unsigned s, o, r;
        s = x & -x;  r = x + s;
        o = r ^ x;  o = (o >> 2) / s;
        return r | o;
    }
    unsigned A014311(int n) {
        if (n == 1) return 7;
        return hakmem175(A014311(n - 1));
    }  // Peter Luschny, Jan 01 2014
    
  • Haskell
    a014311 n = a014311_list !! (n-1)
    a014311_list = [2^x + 2^y + 2^z |
                    x <- [2..], y <- [1..x-1], z <- [0..y-1]]
    -- Reinhard Zumkeller, May 03 2012
    
  • Mathematica
    Select[Range[200], (Count[IntegerDigits[#, 2], 1] == 3)&]
    nn = 8; Flatten[Table[2^i + 2^j + 2^k, {i, 2, nn}, {j, 1, i - 1}, {k, 0, j - 1}]] (* T. D. Noe, Nov 05 2013 *)
  • PARI
    for(n=0,10^3,if(hammingweight(n)==3,print1(n,", "))); \\ Joerg Arndt, Mar 04 2014
    
  • PARI
    print1(t=7);for(i=2,50,print1(","t=A057168(t))) \\ M. F. Hasler, Aug 27 2014
    
  • Python
    A014311_list = [2**a+2**b+2**c for a in range(2,6) for b in range(1,a) for c in range(b)] # Chai Wah Wu, Jan 24 2021
    
  • Python
    from itertools import islice
    def A014311_gen(): # generator of terms
        yield (n:=7)
        while True: yield (n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b)
    A014311_list = list(islice(A014311_gen(),20)) # Chai Wah Wu, Mar 10 2025
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A014311(n): return (1<<(r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+(1<Chai Wah Wu, Mar 10 2025

Formula

A000120(a(n)) = 3. - Reinhard Zumkeller, May 03 2012
Start with A084468. If n is in sequence, then 2n is too. - Ralf Stephan, Aug 16 2013
a(n+1) = A057168(a(n)). - M. F. Hasler, Aug 27 2014
a(n) = 2^A056558(n-1) + 2^A194848(n-1) + 2^A194847(n-1). - Ridouane Oudra, Sep 06 2020
Sum_{n>=1} 1/a(n) = A367110 = 1.428591545852638123996854844400537952781688750906133068397189529775365950039... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Feb 14 2022

Extensions

Extension and program by Olivier Gérard

A337461 Number of pairwise coprime ordered triples of positive integers summing to n.

Original entry on oeis.org

0, 0, 0, 1, 3, 3, 9, 3, 15, 9, 21, 9, 39, 9, 45, 21, 45, 21, 87, 21, 93, 39, 87, 39, 153, 39, 135, 63, 153, 57, 255, 51, 207, 93, 225, 93, 321, 81, 291, 135, 321, 105, 471, 105, 393, 183, 381, 147, 597, 147, 531, 213, 507, 183, 759, 207, 621, 273, 621, 231
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2020

Keywords

Examples

			The a(3) = 1 through a(9) = 9 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)  (1,1,7)
           (1,2,1)  (1,3,1)  (1,2,3)  (1,5,1)  (1,2,5)  (1,3,5)
           (2,1,1)  (3,1,1)  (1,3,2)  (5,1,1)  (1,3,4)  (1,5,3)
                             (1,4,1)           (1,4,3)  (1,7,1)
                             (2,1,3)           (1,5,2)  (3,1,5)
                             (2,3,1)           (1,6,1)  (3,5,1)
                             (3,1,2)           (2,1,5)  (5,1,3)
                             (3,2,1)           (2,5,1)  (5,3,1)
                             (4,1,1)           (3,1,4)  (7,1,1)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A000212 counts the unimodal instead of coprime version.
A220377*6 is the strict case.
A307719 is the unordered version.
A337462 counts these compositions of any length.
A337563 counts the case of partitions with no 1's.
A337603 only requires the *distinct* parts to be pairwise coprime.
A337604 is the intersecting instead of coprime version.
A014612 ranks 3-part partitions.
A302696 ranks pairwise coprime partitions.
A327516 counts pairwise coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@#&]],{n,0,30}]

A000741 Number of compositions of n into 3 ordered relatively prime parts.

Original entry on oeis.org

0, 0, 1, 3, 6, 9, 15, 18, 27, 30, 45, 42, 66, 63, 84, 84, 120, 99, 153, 132, 174, 165, 231, 180, 270, 234, 297, 270, 378, 276, 435, 360, 450, 408, 540, 414, 630, 513, 636, 552, 780, 558, 861, 690, 828, 759, 1035, 744, 1113, 870, 1104, 972, 1326, 945, 1380, 1116, 1386, 1218
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Oct 14 2020: (Start)
The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,2,4)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,3,3)  (1,3,4)
                    (2,1,2)  (1,4,1)  (1,4,2)  (1,4,3)
                    (2,2,1)  (2,1,3)  (1,5,1)  (1,5,2)
                    (3,1,1)  (2,3,1)  (2,1,4)  (1,6,1)
                             (3,1,2)  (2,2,3)  (2,1,5)
                             (3,2,1)  (2,3,2)  (2,3,3)
                             (4,1,1)  (2,4,1)  (2,5,1)
                                      (3,1,3)  (3,1,4)
                                      (3,2,2)  (3,2,3)
                                      (3,3,1)  (3,3,2)
                                      (4,1,2)  (3,4,1)
                                      (4,2,1)  (4,1,3)
                                      (5,1,1)  (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000010 is the length-2 version.
A000217(n-2) does not require relative primality.
A000740 counts these compositions of any length.
A000742 is the length-4 version.
A000837 counts relatively prime partitions.
A023023 is the unordered version.
A101271 is the strict case.
A101391 has this as column k = 3.
A284825*6 is the pairwise non-coprime case.
A291166 intersected with A014311 ranks these compositions.
A337461 is the pairwise coprime instead of relatively prime version.
A337603 counts length-3 compositions whose distinct parts are pairwise coprime.
A337604 is the pairwise non-coprime instead of relatively prime version.

Programs

  • Maple
    with(numtheory):
    mobtr:= proc(p)
              proc(n) option remember;
                add(mobius(n/d)*p(d), d=divisors(n))
              end
            end:
    A000217:= n-> n*(n+1)/2:
    a:= mobtr(n-> A000217(n-2)):
    seq(a(n), n=1..58);  # Alois P. Heinz, Feb 08 2011
  • Mathematica
    mobtr[p_] := Module[{f}, f[n_] := f[n] = Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; f]; A000217[n_] := n*(n+1)/2; a = mobtr[A000217[#-2]&]; Table[a[n], {n, 1, 58}] (* Jean-François Alcover, Mar 12 2014, after Alois P. Heinz *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],GCD@@#==1&]],{n,0,30}] (* Gus Wiseman, Oct 14 2020 *)

Formula

Moebius transform of A000217(n-2).
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = (1 - 3*x + 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 26 2017

Extensions

Edited by Alois P. Heinz, Feb 08 2011

A337601 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 7, 10, 7, 11, 11, 17, 12, 19, 12, 19, 17, 29, 16, 28, 19, 31, 23, 46, 23, 42, 25, 45, 27, 59, 31, 57, 34, 61, 37, 84, 38, 75, 42, 74, 47, 107, 45, 98, 51, 96, 56, 135, 54, 115, 63, 117, 67, 174, 65, 139, 75, 144, 75, 194
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337600 at a(9) = 4, A337600(9) = 5.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  321  322  332  441  433  443  543  544  554
            311  411  331  431  522  532  533  552  553  743
                      511  521  531  541  551  651  661  752
                           611  711  721  722  732  733  761
                                     811  731  741  751  833
                                          911  831  922  851
                                               921  B11  941
                                               A11       A31
                                                         B21
                                                         C11
		

Crossrefs

A014612 intersected with A304711 ranks these partitions.
A220377 is the strict case.
A304709 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337600 considers singletons to be coprime.
A337603 is the ordered version.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337600(n) - A079978(n).

A337453 Numbers k such that the k-th composition in standard order is an ordered triple of distinct positive integers.

Original entry on oeis.org

37, 38, 41, 44, 50, 52, 69, 70, 81, 88, 98, 104, 133, 134, 137, 140, 145, 152, 161, 176, 194, 196, 200, 208, 261, 262, 265, 268, 274, 276, 289, 290, 296, 304, 321, 324, 328, 352, 386, 388, 400, 416, 517, 518, 521, 524, 529, 530, 532, 536, 545, 560, 577, 578
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
     37: (3,2,1)    140: (4,1,3)    289: (3,5,1)
     38: (3,1,2)    145: (3,4,1)    290: (3,4,2)
     41: (2,3,1)    152: (3,1,4)    296: (3,2,4)
     44: (2,1,3)    161: (2,5,1)    304: (3,1,5)
     50: (1,3,2)    176: (2,1,5)    321: (2,6,1)
     52: (1,2,3)    194: (1,5,2)    324: (2,4,3)
     69: (4,2,1)    196: (1,4,3)    328: (2,3,4)
     70: (4,1,2)    200: (1,3,4)    352: (2,1,6)
     81: (2,4,1)    208: (1,2,5)    386: (1,6,2)
     88: (2,1,4)    261: (6,2,1)    388: (1,5,3)
     98: (1,4,2)    262: (6,1,2)    400: (1,3,5)
    104: (1,2,4)    265: (5,3,1)    416: (1,2,6)
    133: (5,2,1)    268: (5,1,3)    517: (7,2,1)
    134: (5,1,2)    274: (4,3,2)    518: (7,1,2)
    137: (4,3,1)    276: (4,2,3)    521: (6,3,1)
		

Crossrefs

6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts these compositions.
A007304 is an unordered version.
A014311 is the non-strict version.
A337461 counts the coprime case.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A014612 ranks 3-part partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[stc[#]]==3&&UnsameQ@@stc[#]&]

Formula

These triples are counted by 6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1).
Intersection of A014311 and A233564.

A337665 Number of compositions of n whose distinct parts are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 1, 1, 3, 6, 15, 27, 57, 108, 208, 393, 749, 1415, 2687, 5076, 9583, 18088, 34156, 64511, 121898, 230368, 435460, 823376, 1557420, 2946931, 5578109, 10561987, 20005126, 37902509, 71832372, 136173266, 258211602, 489738622, 929074445, 1762899107, 3345713031
Offset: 0

Views

Author

Gus Wiseman, Sep 22 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 15 compositions:
  (1)  (1,1)  (1,2)    (1,3)      (1,4)
              (2,1)    (3,1)      (2,3)
              (1,1,1)  (1,1,2)    (3,2)
                       (1,2,1)    (4,1)
                       (2,1,1)    (1,1,3)
                       (1,1,1,1)  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
		

Crossrefs

A000740 is a relatively prime instead of pairwise coprime version.
A304709 is the unordered version.
A333228 ranks these compositions.
A337561 is the strict case.
A337603 is the length-3 case.
A337664 considers all singletons to be coprime.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A337461 counts pairwise coprime length-3 compositions.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],CoprimeQ@@Union[#]&]],{n,0,15}]

Extensions

a(26)-a(35) from Alois P. Heinz, Sep 29 2020

A337484 Number of ordered triples of positive integers summing to n that are neither strictly increasing nor strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 8, 13, 17, 22, 28, 35, 41, 50, 58, 67, 77, 88, 98, 111, 123, 136, 150, 165, 179, 196, 212, 229, 247, 266, 284, 305, 325, 346, 368, 391, 413, 438, 462, 487, 513, 540, 566, 595, 623, 652, 682, 713, 743, 776, 808, 841, 875, 910, 944, 981, 1017
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2020

Keywords

Examples

			The a(3) = 1 through a(7) = 13 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)
           (1,2,1)  (1,2,2)  (1,3,2)  (1,3,3)
           (2,1,1)  (1,3,1)  (1,4,1)  (1,4,2)
                    (2,1,2)  (2,1,3)  (1,5,1)
                    (2,2,1)  (2,2,2)  (2,1,4)
                    (3,1,1)  (2,3,1)  (2,2,3)
                             (3,1,2)  (2,3,2)
                             (4,1,1)  (2,4,1)
                                      (3,1,3)
                                      (3,2,2)
                                      (3,3,1)
                                      (4,1,2)
                                      (5,1,1)
		

Crossrefs

A140106 is the unordered case.
A242771 allows strictly increasing but not strictly decreasing triples.
A337481 counts these compositions of any length.
A001399(n - 6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A332745 counts partitions with weakly increasing or weakly decreasing run-lengths.
A332835 counts compositions with weakly increasing or weakly decreasing run-lengths.
A337483 counts triples either weakly increasing or weakly decreasing.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&&!Greater@@#&]],{n,0,15}]

Formula

a(n) = 2*A242771(n - 1) - A000217(n - 1), n > 0.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) is the complement.
4*A001399(n - 6) = 4*A069905(n - 3) = 4*A211540(n - 1) is the strict case.
Conjectures from Colin Barker, Sep 13 2020: (Start)
G.f.: x^3*(1 + 2*x + 2*x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6.
(End)

A337483 Number of ordered triples of positive integers summing to n that are either weakly increasing or weakly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 5, 8, 10, 13, 16, 20, 23, 28, 32, 37, 42, 48, 53, 60, 66, 73, 80, 88, 95, 104, 112, 121, 130, 140, 149, 160, 170, 181, 192, 204, 215, 228, 240, 253, 266, 280, 293, 308, 322, 337, 352, 368, 383, 400, 416, 433, 450, 468, 485, 504, 522, 541, 560
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 10 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (2,1,1)  (1,2,2)  (1,2,3)  (1,2,4)  (1,2,5)
                    (2,2,1)  (2,2,2)  (1,3,3)  (1,3,4)
                    (3,1,1)  (3,2,1)  (2,2,3)  (2,2,4)
                             (4,1,1)  (3,2,2)  (2,3,3)
                                      (3,3,1)  (3,3,2)
                                      (4,2,1)  (4,2,2)
                                      (5,1,1)  (4,3,1)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A001399(n - 3) = A069905(n) = A211540(n + 2) counts the unordered case.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) counts the strict case.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts the strict unordered case.
A329398 counts these compositions of any length.
A218004 counts strictly increasing or weakly decreasing compositions.
A337484 counts neither strictly increasing nor strictly decreasing compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],LessEqual@@#||GreaterEqual@@#&]],{n,0,30}]

Formula

a(n > 0) = 2*A001399(n - 3) - A079978(n).
From Colin Barker, Sep 08 2020: (Start)
G.f.: x^3*(1 + x + x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6. (End)
E.g.f.: (36 - 9*exp(-x) + exp(x)*(6*x^2 + 6*x - 19) - 8*exp(-x/2)*cos(sqrt(3)*x/2))/36. - Stefano Spezia, Apr 05 2023

A337602 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 10, 9, 18, 16, 24, 21, 43, 24, 51, 31, 54, 42, 94, 45, 102, 55, 99, 69, 163, 66, 150, 88, 168, 96, 265, 93, 228, 121, 246, 126, 337, 132, 315, 169, 342, 162, 487, 165, 420, 217, 411, 213, 619, 207, 558, 259, 540, 258, 784, 264, 654, 325, 660
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,3,3)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,5,1)  (1,3,4)
                    (2,1,2)  (1,4,1)  (2,2,3)  (1,4,3)
                    (2,2,1)  (2,1,3)  (2,3,2)  (1,5,2)
                    (3,1,1)  (2,2,2)  (3,1,3)  (1,6,1)
                             (2,3,1)  (3,2,2)  (2,1,5)
                             (3,1,2)  (3,3,1)  (2,3,3)
                             (3,2,1)  (5,1,1)  (2,5,1)
                             (4,1,1)           (3,1,4)
                                               (3,2,3)
                                               (3,3,2)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

The complement in A014311 of A337695 ranks these compositions.
A220377*6 is the strict case.
A337600 is the unordered version.
A337603 does not consider a singleton to be coprime unless it is (1).
A337664 counts these compositions of any length.
A000740 counts relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
A000217 counts 3-part compositions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,100}]
Showing 1-10 of 15 results. Next