cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A358836 Number of multiset partitions of integer partitions of n with all distinct block sizes.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Comments

Also the number of integer compositions of n whose leaders of maximal weakly decreasing runs are strictly increasing. For example, the composition (1,2,2,1,3,1,4,1) has maximal weakly decreasing runs ((1),(2,2,1),(3,1),(4,1)), with leaders (1,2,3,4), so is counted under a(15). - Gus Wiseman, Aug 21 2024

Examples

			The a(1) = 1 through a(5) = 15 multiset partitions:
  {1}  {2}    {3}        {4}          {5}
       {1,1}  {1,2}      {1,3}        {1,4}
              {1,1,1}    {2,2}        {2,3}
              {1},{1,1}  {1,1,2}      {1,1,3}
                         {1,1,1,1}    {1,2,2}
                         {1},{1,2}    {1,1,1,2}
                         {2},{1,1}    {1},{1,3}
                         {1},{1,1,1}  {1},{2,2}
                                      {2},{1,2}
                                      {3},{1,1}
                                      {1,1,1,1,1}
                                      {1},{1,1,2}
                                      {2},{1,1,1}
                                      {1},{1,1,1,1}
                                      {1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
(End)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of sizes we have A271619.
For constant instead of distinct sizes we have A319066.
These multiset partitions are ranked by A326533.
For odd instead of distinct sizes we have A356932.
The version for twice-partitions is A358830.
The case of distinct sums also is A358832.
Ranked by positions of strictly increasing rows in A374740, opposite A374629.
A001970 counts multiset partitions of integer partitions.
A011782 counts compositions.
A063834 counts twice-partitions, strict A296122.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
    (* second program *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: Product_{k>=1} (1 + [y^k]P(x,y)) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022

A358830 Number of twice-partitions of n into partitions with all different lengths.

Original entry on oeis.org

1, 1, 2, 4, 9, 15, 31, 53, 105, 178, 330, 555, 1024, 1693, 2991, 5014, 8651, 14242, 24477, 39864, 67078, 109499, 181311, 292764, 483775, 774414, 1260016, 2016427, 3254327, 5162407, 8285796, 13074804, 20812682, 32733603, 51717463, 80904644, 127305773, 198134675, 309677802
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (11)(2)   (2111)
                      (2)(11)   (11111)
                      (21)(1)   (21)(2)
                      (111)(1)  (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of lengths we have A271619.
For constant instead of distinct lengths we have A306319.
The case of distinct sums also is A358832.
The version for multiset partitions of integer partitions is A358836.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A358824 Number of twice-partitions of n of odd length.

Original entry on oeis.org

0, 1, 2, 4, 7, 15, 32, 61, 121, 260, 498, 967, 1890, 3603, 6839, 12972, 23883, 44636, 82705, 150904, 275635, 501737, 905498, 1628293, 2922580, 5224991, 9296414, 16482995, 29125140, 51287098, 90171414, 157704275, 275419984, 479683837, 833154673, 1442550486, 2493570655
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)        (4)         (5)
       (11)  (21)       (22)        (32)
             (111)      (31)        (41)
             (1)(1)(1)  (211)       (221)
                        (1111)      (311)
                        (2)(1)(1)   (2111)
                        (11)(1)(1)  (11111)
                                    (2)(2)(1)
                                    (3)(1)(1)
                                    (11)(2)(1)
                                    (2)(11)(1)
                                    (21)(1)(1)
                                    (11)(11)(1)
                                    (111)(1)(1)
                                    (1)(1)(1)(1)(1)
		

Crossrefs

The version for set partitions is A024429.
For odd lengths (instead of length) we have A358334.
The case of odd parts also is A358823.
The case of odd sums also is A358826.
The case of odd lengths also is A358834.
For multiset partitions of integer partitions: A358837, ranked by A026424.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&]],{n,0,10}]
  • PARI
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=vector(n,k,numbpart(k))); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A000041(k)*x^k)) - (1/Product_{k>=1} (1+A000041(k)*x^k)))/2. - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 30 2022

A358823 Number of odd-length twice-partitions of n into partitions with all odd parts.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 10, 20, 29, 58, 83, 150, 230, 399, 605, 1037, 1545, 2547, 3879, 6241, 9437, 15085, 22622, 35493, 53438, 82943, 124157, 191267, 284997, 434634, 647437, 979293, 1452182, 2185599, 3228435, 4826596, 7112683, 10575699, 15530404, 22990800, 33651222
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.
Also the number of odd-length twice-partitions of n into strict partitions.

Examples

			The a(1) = 1 through a(6) = 10 twice-partitions with all odd parts:
  (1)  (11)  (3)        (31)        (5)              (33)
             (111)      (1111)      (311)            (51)
             (1)(1)(1)  (11)(1)(1)  (11111)          (3111)
                                    (3)(1)(1)        (111111)
                                    (11)(11)(1)      (3)(11)(1)
                                    (111)(1)(1)      (31)(1)(1)
                                    (1)(1)(1)(1)(1)  (11)(11)(11)
                                                     (111)(11)(1)
                                                     (1111)(1)(1)
                                                     (11)(1)(1)(1)(1)
The a(1) = 1 through a(6) = 10 twice-partitions into strict partitions:
  (1)  (2)  (3)        (4)        (5)              (6)
            (21)       (31)       (32)             (42)
            (1)(1)(1)  (2)(1)(1)  (41)             (51)
                                  (2)(2)(1)        (321)
                                  (3)(1)(1)        (2)(2)(2)
                                  (21)(1)(1)       (3)(2)(1)
                                  (1)(1)(1)(1)(1)  (4)(1)(1)
                                                   (21)(2)(1)
                                                   (31)(1)(1)
                                                   (2)(1)(1)(1)(1)
		

Crossrefs

This is the odd-length case of A270995.
Requiring odd sums also gives A279374 aerated.
This is the case of A358824 with all odd parts.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
A358334 counts twice-partitions into odd-length partitions.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Flatten[#]]&]],{n,0,10}]
  • PARI
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A000009(k)*x^k)) - (1/Product_{k>=1} (1+A000009(k)*x^k)))/2. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A358832 Number of twice-partitions of n into partitions of distinct lengths and distinct sums.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 25, 49, 79, 154, 248, 453, 748, 1305, 2125, 3702, 5931, 9990, 16415, 26844, 43246, 70947, 113653, 182314, 292897, 464614, 739640, 1169981, 1844511, 2888427, 4562850, 7079798, 11064182, 17158151, 26676385, 41075556, 63598025, 97420873, 150043132
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (21)(1)   (2111)
                      (111)(1)  (11111)
                                (21)(2)
                                (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

This is the case of A271619 with distinct lengths.
These multiset partitions are ranked by A326535 /\ A326533.
This is the case of A358830 with distinct sums.
For constant instead of distinct lengths and sums we have A358833.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m-1,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022

A358834 Number of odd-length twice-partitions of n into odd-length partitions.

Original entry on oeis.org

0, 1, 1, 3, 3, 8, 11, 24, 35, 74, 109, 213, 336, 624, 986, 1812, 2832, 5002, 7996, 13783, 21936, 37528, 59313, 99598, 158356, 262547, 415590, 684372, 1079576, 1759984, 2779452, 4491596, 7069572, 11370357, 17841534, 28509802, 44668402, 70975399, 110907748
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(6) = 11 twice-partitions:
  (1)  (2)  (3)        (4)        (5)              (6)
            (111)      (211)      (221)            (222)
            (1)(1)(1)  (2)(1)(1)  (311)            (321)
                                  (11111)          (411)
                                  (2)(2)(1)        (21111)
                                  (3)(1)(1)        (2)(2)(2)
                                  (111)(1)(1)      (3)(2)(1)
                                  (1)(1)(1)(1)(1)  (4)(1)(1)
                                                   (111)(2)(1)
                                                   (211)(1)(1)
                                                   (2)(1)(1)(1)(1)
		

Crossrefs

The version for set partitions is A003712.
If the parts are also odd we get A279374.
The version for multiset partitions of integer partitions is the odd-length case of A356932, ranked by A026424 /\ A356935.
This is the odd-length case of A358334.
This is the odd-lengths case of A358824.
For odd sums instead of lengths we have A358826.
The case of odd sums also is the bisection of A358827.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Length/@#]&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A027193(k)*x^k)) - (1/Product_{k>=1} (1+A027193(k)*x^k)))/2. - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2022

A358825 Number of ways to choose a sequence of integer partitions, one of each part of an integer partition of n into odd parts.

Original entry on oeis.org

1, 1, 1, 4, 4, 11, 20, 35, 56, 113, 207, 326, 602, 985, 1777, 3124, 5115, 8523, 15011, 24519, 41571, 71096, 115650, 191940, 320651, 530167, 865781, 1442059, 2358158, 3833007, 6325067, 10243259, 16603455, 27151086, 43734197, 71032191, 115091799, 184492464
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 11 twice-partitions:
  (1)  (1)(1)  (3)        (3)(1)        (5)
               (21)       (21)(1)       (32)
               (111)      (111)(1)      (41)
               (1)(1)(1)  (1)(1)(1)(1)  (221)
                                        (311)
                                        (2111)
                                        (11111)
                                        (3)(1)(1)
                                        (21)(1)(1)
                                        (111)(1)(1)
                                        (1)(1)(1)(1)(1)
		

Crossrefs

For odd parts instead of sums we have A270995.
For distinct instead of odd sums we have A271619.
Requiring odd length, odd lengths, and odd parts gives A279374 aerated.
For odd lengths instead of sums we have A358334.
The odd-length case is A358826.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Total/@#]&]],{n,0,10}]

Formula

G.f.: Product_{k odd} 1/(1-A000041(k)*x^k).

A358827 Number of twice-partitions of n into partitions with all odd lengths and sums.

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 11, 19, 27, 51, 83, 128, 208, 324, 542, 856, 1332, 2047, 3371, 5083, 8009, 12545, 19478, 29770, 46038, 70777, 108627, 167847, 255408, 388751, 593475, 901108, 1361840, 2077973, 3125004, 4729056, 7146843, 10732799, 16104511, 24257261, 36305878
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(6) = 11 twice-partitions:
  (1)  (1)(1)  (3)        (3)(1)        (5)              (3)(3)
               (111)      (111)(1)      (221)            (5)(1)
               (1)(1)(1)  (1)(1)(1)(1)  (311)            (111)(3)
                                        (11111)          (221)(1)
                                        (3)(1)(1)        (3)(111)
                                        (111)(1)(1)      (311)(1)
                                        (1)(1)(1)(1)(1)  (111)(111)
                                                         (11111)(1)
                                                         (3)(1)(1)(1)
                                                         (111)(1)(1)(1)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

This is the case of A358334 with odd sums.
This is the case of A358825 with odd lengths.
The case of odd length is the odd bisection.
For odd parts instead of lengths and sums we have A270995.
Requiring odd parts also gives A279374 aerated.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&&OddQ[Times@@Total/@#]&]],{n,0,10}]

Formula

G.f.: Product_{k odd} 1/(1-A027193(k)*x^k).

A358837 Number of odd-length multiset partitions of integer partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 14, 28, 54, 106, 208, 399, 757, 1424, 2642, 4860, 8851, 15991, 28673, 51095, 90454, 159306, 279067, 486598, 844514, 1459625, 2512227, 4307409, 7357347, 12522304, 21238683, 35903463, 60497684, 101625958, 170202949, 284238857, 473356564, 786196353
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 14 multiset partitions:
  {{1}}  {{2}}    {{3}}          {{4}}            {{5}}
         {{1,1}}  {{1,2}}        {{1,3}}          {{1,4}}
                  {{1,1,1}}      {{2,2}}          {{2,3}}
                  {{1},{1},{1}}  {{1,1,2}}        {{1,1,3}}
                                 {{1,1,1,1}}      {{1,2,2}}
                                 {{1},{1},{2}}    {{1,1,1,2}}
                                 {{1},{1},{1,1}}  {{1,1,1,1,1}}
                                                  {{1},{1},{3}}
                                                  {{1},{2},{2}}
                                                  {{1},{1},{1,2}}
                                                  {{1},{2},{1,1}}
                                                  {{1},{1},{1,1,1}}
                                                  {{1},{1,1},{1,1}}
                                                  {{1},{1},{1},{1},{1}}
		

Crossrefs

The version for set partitions is A024429.
These multiset partitions are ranked by A026424.
The version for partitions is A027193.
The version for twice-partitions is A358824.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions, strict A296122.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@Reverse/@IntegerPartitions[n],OddQ[Length[#]]&]],{n,0,10}]
  • PARI
    P(v,y) = {1/prod(k=1, #v, (1 - y*x^k + O(x*x^#v))^v[k])}
    seq(n) = {my(v=vector(n, k, numbpart(k))); (Vec(P(v,1)) - Vec(P(v,-1)))/2} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: ((1/Product_{k>=1} (1-x^k)^A000041(k)) - (1/Product_{k>=1} (1+x^k)^A000041(k))) / 2. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022
Showing 1-9 of 9 results.