A358836
Number of multiset partitions of integer partitions of n with all distinct block sizes.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0
The a(1) = 1 through a(5) = 15 multiset partitions:
{1} {2} {3} {4} {5}
{1,1} {1,2} {1,3} {1,4}
{1,1,1} {2,2} {2,3}
{1},{1,1} {1,1,2} {1,1,3}
{1,1,1,1} {1,2,2}
{1},{1,2} {1,1,1,2}
{2},{1,1} {1},{1,3}
{1},{1,1,1} {1},{2,2}
{2},{1,2}
{3},{1,1}
{1,1,1,1,1}
{1},{1,1,2}
{2},{1,1,1}
{1},{1,1,1,1}
{1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
The version for set partitions is
A007837.
For sums instead of sizes we have
A271619.
For constant instead of distinct sizes we have
A319066.
These multiset partitions are ranked by
A326533.
For odd instead of distinct sizes we have
A356932.
The version for twice-partitions is
A358830.
The case of distinct sums also is
A358832.
Ranked by positions of strictly increasing rows in
A374740, opposite
A374629.
A001970 counts multiset partitions of integer partitions.
A335456 counts patterns matched by compositions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
(* second program *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022
A358830
Number of twice-partitions of n into partitions with all different lengths.
Original entry on oeis.org
1, 1, 2, 4, 9, 15, 31, 53, 105, 178, 330, 555, 1024, 1693, 2991, 5014, 8651, 14242, 24477, 39864, 67078, 109499, 181311, 292764, 483775, 774414, 1260016, 2016427, 3254327, 5162407, 8285796, 13074804, 20812682, 32733603, 51717463, 80904644, 127305773, 198134675, 309677802
Offset: 0
The a(1) = 1 through a(5) = 15 twice-partitions:
(1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(11)(1) (211) (221)
(1111) (311)
(11)(2) (2111)
(2)(11) (11111)
(21)(1) (21)(2)
(111)(1) (22)(1)
(3)(11)
(31)(1)
(111)(2)
(211)(1)
(111)(11)
(1111)(1)
The version for set partitions is
A007837.
For sums instead of lengths we have
A271619.
For constant instead of distinct lengths we have
A306319.
The case of distinct sums also is
A358832.
The version for multiset partitions of integer partitions is
A358836.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],UnsameQ@@Length/@#&]],{n,0,10}]
-
seq(n)={ local(Cache=Map());
my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022
A358833
Number of rectangular twice-partitions of n of type (P,R,P).
Original entry on oeis.org
1, 1, 3, 4, 8, 8, 17, 16, 32, 34, 56, 57, 119, 102, 179, 199, 335, 298, 598, 491, 960, 925, 1441, 1256, 2966, 2026, 3726, 3800, 6488, 4566, 11726, 6843, 16176, 14109, 21824, 16688, 49507, 21638, 50286, 50394, 99408, 44584, 165129, 63262, 208853, 205109, 248150
Offset: 0
The a(1) = 1 through a(5) = 8 twice-partitions:
(1) (2) (3) (4) (5)
(11) (21) (22) (32)
(1)(1) (111) (31) (41)
(1)(1)(1) (211) (221)
(1111) (311)
(2)(2) (2111)
(11)(11) (11111)
(1)(1)(1)(1) (1)(1)(1)(1)(1)
This is the rectangular case of
A279787.
This is the case of
A306319 with constant sums.
For distinct instead of constant lengths and sums we have
A358832.
The version for multiset partitions of integer partitions is
A358835.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],SameQ@@Length/@#&&SameQ@@Total/@#&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, polcoef(p, j, y)^d))))} \\ Andrew Howroyd, Dec 31 2022
A358835
Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.
Original entry on oeis.org
1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483
Offset: 0
The a(1) = 1 through a(6) = 17 multiset partitions:
{1} {2} {3} {4} {5} {6}
{11} {12} {13} {14} {15}
{1}{1} {111} {22} {23} {24}
{1}{1}{1} {112} {113} {33}
{1111} {122} {114}
{2}{2} {1112} {123}
{11}{11} {11111} {222}
{1}{1}{1}{1} {1}{1}{1}{1}{1} {1113}
{1122}
{3}{3}
{11112}
{111111}
{12}{12}
{2}{2}{2}
{111}{111}
{11}{11}{11}
{1}{1}{1}{1}{1}{1}
The version for set partitions is
A327899.
For distinct instead of constant lengths and sums we have
A358832.
The version for twice-partitions is
A358833.
A001970 counts multiset partitions of integer partitions.
-
Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}]
-
P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n))
seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022
Showing 1-4 of 4 results.
Comments