cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Comments

These are different from plane partitions.
For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006
Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
		

Crossrefs

The strict case is A296122.
Row sums of A321449.
Column k=2 of A323718.
Without singletons we have A327769, A358828, A358829.
For odd lengths we have A358823, A358824.
For distinct lengths we have A358830, A358912.
For strict partitions see A358914, A382524.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015
  • Mathematica
    Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

Formula

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

A375133 Number of integer partitions of n whose maximal anti-runs have distinct maxima.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 17, 23, 29, 38, 47, 60, 74, 93, 113, 141, 171, 211, 253, 309, 370, 447, 532, 639, 758, 904, 1066, 1265, 1487, 1754, 2053, 2411, 2813, 3289, 3823, 4454, 5161, 5990, 6920, 8005, 9223, 10634, 12218, 14048, 16101, 18462, 21107
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
These are partitions with no part appearing more than twice and greatest part appearing only once.
Also the number of reversed integer partitions of n whose maximal anti-runs have distinct maxima.

Examples

			The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with maxima (6,5,3), so y is counted under a(29).
The a(0) = 1 through a(9) = 14 partitions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)     (9)
                (21)  (31)   (32)   (42)   (43)    (53)    (54)
                      (211)  (41)   (51)   (52)    (62)    (63)
                             (311)  (321)  (61)    (71)    (72)
                                    (411)  (322)   (422)   (81)
                                           (421)   (431)   (432)
                                           (511)   (521)   (522)
                                           (3211)  (611)   (531)
                                                   (3221)  (621)
                                                   (4211)  (711)
                                                           (4221)
                                                           (4311)
                                                           (5211)
                                                           (32211)
		

Crossrefs

Includes all strict partitions A000009.
For identical instead of distinct see: A034296, A115029, A374760, A374759.
For compositions instead of partitions we have A374761.
For minima instead of maxima we have A375134, ranks A375398.
The complement is counted by A375401, ranks A375403.
These partitions are ranked by A375402, for compositions A374767.
The complement for minima instead of maxima is A375404, ranks A375399.
A000041 counts integer partitions.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=sum(i=0,N,(x^i)*prod(j=1,i-1,(1-x^(3*j))/(1-x^j)))); Vec(f)}
    A_x(51) \\ John Tyler Rascoe, Aug 21 2024

Formula

G.f.: Sum_{i>=0} (x^i * Product_{j=1..i-1} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024

A358905 Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 49, 91, 179, 341, 664, 1280, 2503, 4872, 9557, 18750, 36927, 72800, 143880, 284660, 564093, 1118911, 2221834, 4415417, 8781591, 17476099, 34799199, 69327512, 138176461, 275503854, 549502119, 1096327380, 2187894634, 4367310138, 8719509111
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(0) = 1 through a(4) = 13 sequences:
  ()  ((1))  ((2))     ((3))        ((4))
             ((11))    ((21))       ((22))
             ((1)(1))  ((111))      ((31))
                       ((1)(2))     ((211))
                       ((2)(1))     ((1111))
                       ((1)(1)(1))  ((1)(3))
                                    ((2)(2))
                                    ((3)(1))
                                    ((11)(11))
                                    ((1)(1)(2))
                                    ((1)(2)(1))
                                    ((2)(1)(1))
                                    ((1)(1)(1)(1))
		

Crossrefs

The case of set partitions is A038041.
The version for weakly decreasing lengths is A141199, strictly A358836.
For equal sums instead of lengths we have A279787.
The case of twice-partitions is A306319, distinct A358830.
The unordered version is A319066.
The case of plane partitions is A323429.
The case of constant sums also is A358833.
A055887 counts sequences of partitions with total sum n.
A281145 counts same-trees.
A319169 counts partitions with constant Omega, ranked by A320324.
A358911 counts compositions with constant Omega, distinct A358912.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: 1 + Sum_{k>=1} (1/(1 - [y^k]P(x,y)) - 1) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A374704 Number of ways to choose an integer partition of each part of an integer composition of n (A055887) such that the minima are identical.

Original entry on oeis.org

1, 1, 3, 6, 15, 31, 77, 171, 410, 957, 2275, 5370, 12795, 30366, 72307, 172071, 409875, 976155, 2325804, 5541230, 13204161, 31464226, 74980838, 178684715, 425830008, 1014816979, 2418489344, 5763712776, 13736075563, 32735874251, 78016456122, 185929792353, 443110675075
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Examples

			The a(0) = 1 through a(4) = 15 ways:
  ()  ((1))  ((2))      ((3))          ((4))
             ((1,1))    ((1,2))        ((1,3))
             ((1),(1))  ((1,1,1))      ((2,2))
                        ((1),(1,1))    ((1,1,2))
                        ((1,1),(1))    ((2),(2))
                        ((1),(1),(1))  ((1,1,1,1))
                                       ((1),(1,2))
                                       ((1,2),(1))
                                       ((1),(1,1,1))
                                       ((1,1),(1,1))
                                       ((1,1,1),(1))
                                       ((1),(1),(1,1))
                                       ((1),(1,1),(1))
                                       ((1,1),(1),(1))
                                       ((1),(1),(1),(1))
		

Crossrefs

A variation for weakly increasing lengths is A141199.
For identical sums instead of minima we have A279787.
The case of reversed twice-partitions is A306319, distinct A358830.
For maxima instead of minima, or for unreversed partitions, we have A358905.
The strict case is A374686 (ranks A374685), maxima A374760 (ranks A374759).
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A055887 counts sequences of partitions with total sum n.
A281145 counts same-trees.
A319169 counts partitions with constant Omega, ranked by A320324.
A358911 counts compositions with constant Omega, distinct A358912.

Programs

  • Mathematica
    Table[Length[Select[Join@@Table[Tuples[IntegerPartitions/@y], {y,Join@@Permutations/@IntegerPartitions[n]}],SameQ@@Min/@#&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1 + sum(k=1, n, -1 + 1/(1 - x^k/prod(j=k, n-k, 1 - x^j, 1 + O(x^(n-k+1)))))) \\ Andrew Howroyd, Dec 29 2024

Formula

G.f.: 1 + Sum_{k>=1} (-1 + 1/(1 - x^k/Product_{j>=k} (1 - x^j))). - Andrew Howroyd, Dec 29 2024

Extensions

a(16) onwards from Andrew Howroyd, Dec 29 2024

A358832 Number of twice-partitions of n into partitions of distinct lengths and distinct sums.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 25, 49, 79, 154, 248, 453, 748, 1305, 2125, 3702, 5931, 9990, 16415, 26844, 43246, 70947, 113653, 182314, 292897, 464614, 739640, 1169981, 1844511, 2888427, 4562850, 7079798, 11064182, 17158151, 26676385, 41075556, 63598025, 97420873, 150043132
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (21)(1)   (2111)
                      (111)(1)  (11111)
                                (21)(2)
                                (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

This is the case of A271619 with distinct lengths.
These multiset partitions are ranked by A326535 /\ A326533.
This is the case of A358830 with distinct sums.
For constant instead of distinct lengths and sums we have A358833.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m-1,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022

A358835 Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.

Original entry on oeis.org

1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Examples

			The a(1) = 1 through a(6) = 17 multiset partitions:
  {1}  {2}     {3}        {4}           {5}              {6}
       {11}    {12}       {13}          {14}             {15}
       {1}{1}  {111}      {22}          {23}             {24}
               {1}{1}{1}  {112}         {113}            {33}
                          {1111}        {122}            {114}
                          {2}{2}        {1112}           {123}
                          {11}{11}      {11111}          {222}
                          {1}{1}{1}{1}  {1}{1}{1}{1}{1}  {1113}
                                                         {1122}
                                                         {3}{3}
                                                         {11112}
                                                         {111111}
                                                         {12}{12}
                                                         {2}{2}{2}
                                                         {111}{111}
                                                         {11}{11}{11}
                                                         {1}{1}{1}{1}{1}{1}
		

Crossrefs

For just constant sums we have A305551, ranked by A326534.
For just constant lengths we have A319066, ranked by A320324.
The version for set partitions is A327899.
For distinct instead of constant lengths and sums we have A358832.
The version for twice-partitions is A358833.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions, strict A296122.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}]
  • PARI
    P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n))
    seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022

Formula

a(n) = Sum_{d|n} Sum_{j=1..n/d} binomial(d + A008284(n/d, j) - 1, d) for n > 0. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(41) and beyond from Andrew Howroyd, Dec 31 2022
Showing 1-6 of 6 results.