A063834
Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.
Original entry on oeis.org
1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
A001970 counts multiset partitions of integer partitions.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Nov 26 2015
-
Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
(* second program: *)
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */
A358914
Number of twice-partitions of n into distinct strict partitions.
Original entry on oeis.org
1, 1, 1, 3, 4, 7, 13, 20, 32, 51, 83, 130, 206, 320, 496, 759, 1171, 1786, 2714, 4104, 6193, 9286, 13920, 20737, 30865, 45721, 67632, 99683, 146604, 214865, 314782, 459136, 668867, 972425, 1410458, 2040894, 2950839, 4253713, 6123836, 8801349, 12627079
Offset: 0
The a(1) = 1 through a(6) = 13 twice-partitions:
((1)) ((2)) ((3)) ((4)) ((5)) ((6))
((21)) ((31)) ((32)) ((42))
((2)(1)) ((3)(1)) ((41)) ((51))
((21)(1)) ((3)(2)) ((321))
((4)(1)) ((4)(2))
((21)(2)) ((5)(1))
((31)(1)) ((21)(3))
((31)(2))
((3)(21))
((32)(1))
((41)(1))
((3)(2)(1))
((21)(2)(1))
This is the distinct case of
A270995.
The case of strictly decreasing sums is
A279785.
The case of constant sums is
A279791.
For distinct instead of weakly decreasing sums we have
A336343.
This is the twice-partition case of
A358913.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.
Cf.
A000009,
A000219,
A075900,
A271619,
A296122,
A304969,
A321449,
A336342,
A358901,
A358906,
A358907.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]
-
seq(n,k)={my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))-1)); Vec(prod(k=1, n, my(c=u[k]); sum(j=0, min(c,n\k), x^(j*k)*c!/(c-j)!, O(x*x^n))))} \\ Andrew Howroyd, Dec 31 2022
A358836
Number of multiset partitions of integer partitions of n with all distinct block sizes.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0
The a(1) = 1 through a(5) = 15 multiset partitions:
{1} {2} {3} {4} {5}
{1,1} {1,2} {1,3} {1,4}
{1,1,1} {2,2} {2,3}
{1},{1,1} {1,1,2} {1,1,3}
{1,1,1,1} {1,2,2}
{1},{1,2} {1,1,1,2}
{2},{1,1} {1},{1,3}
{1},{1,1,1} {1},{2,2}
{2},{1,2}
{3},{1,1}
{1,1,1,1,1}
{1},{1,1,2}
{2},{1,1,1}
{1},{1,1,1,1}
{1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
The version for set partitions is
A007837.
For sums instead of sizes we have
A271619.
For constant instead of distinct sizes we have
A319066.
These multiset partitions are ranked by
A326533.
For odd instead of distinct sizes we have
A356932.
The version for twice-partitions is
A358830.
The case of distinct sums also is
A358832.
Ranked by positions of strictly increasing rows in
A374740, opposite
A374629.
A001970 counts multiset partitions of integer partitions.
A335456 counts patterns matched by compositions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
(* second program *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022
A375133
Number of integer partitions of n whose maximal anti-runs have distinct maxima.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 17, 23, 29, 38, 47, 60, 74, 93, 113, 141, 171, 211, 253, 309, 370, 447, 532, 639, 758, 904, 1066, 1265, 1487, 1754, 2053, 2411, 2813, 3289, 3823, 4454, 5161, 5990, 6920, 8005, 9223, 10634, 12218, 14048, 16101, 18462, 21107
Offset: 0
The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with maxima (6,5,3), so y is counted under a(29).
The a(0) = 1 through a(9) = 14 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(311) (321) (61) (71) (72)
(411) (322) (422) (81)
(421) (431) (432)
(511) (521) (522)
(3211) (611) (531)
(3221) (621)
(4211) (711)
(4221)
(4311)
(5211)
(32211)
Includes all strict partitions
A000009.
For compositions instead of partitions we have
A374761.
The complement for minima instead of maxima is
A375404, ranks
A375399.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums
A374706.
Cf.
A141199,
A279790,
A358830,
A358833,
A358836,
A358905,
A374704,
A374757,
A374758,
A375136,
A375400.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
-
A_x(N) = {my(x='x+O('x^N), f=sum(i=0,N,(x^i)*prod(j=1,i-1,(1-x^(3*j))/(1-x^j)))); Vec(f)}
A_x(51) \\ John Tyler Rascoe, Aug 21 2024
A358831
Number of twice-partitions of n into partitions with weakly decreasing lengths.
Original entry on oeis.org
1, 1, 3, 6, 14, 26, 56, 102, 205, 372, 708, 1260, 2345, 4100, 7388, 12819, 22603, 38658, 67108, 113465, 193876, 324980, 547640, 909044, 1516609, 2495023, 4118211, 6726997, 11002924, 17836022, 28948687, 46604803, 75074397, 120134298, 192188760, 305709858, 486140940
Offset: 0
The a(1) = 1 through a(4) = 14 twice-partitions:
(1) (2) (3) (4)
(11) (21) (22)
(1)(1) (111) (31)
(2)(1) (211)
(11)(1) (1111)
(1)(1)(1) (2)(2)
(3)(1)
(11)(2)
(21)(1)
(11)(11)
(111)(1)
(2)(1)(1)
(11)(1)(1)
(1)(1)(1)(1)
This is the semi-ordered case of
A141199.
For constant instead of weakly decreasing lengths we have
A306319.
For distinct instead of weakly decreasing lengths we have
A358830.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],GreaterEqual@@Length/@#&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=Vec(P(n,y)-1), v=[1]); for(k=1, n, my(p=g[k], u=v); v=vector(k+1); v[1] = 1 + O(x*x^n); for(j=1, k, v[1+j] = (v[j] + if(jAndrew Howroyd, Dec 31 2022
A375134
Number of integer partitions of n whose maximal anti-runs have distinct minima.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 4, 6, 8, 11, 12, 18, 21, 28, 33, 43, 52, 66, 78, 98, 116, 145, 171, 209, 247, 300, 352, 424, 499, 595, 695, 826, 963, 1138, 1322, 1553, 1802, 2106, 2435, 2835, 3271, 3795, 4365, 5046, 5792, 6673, 7641, 8778, 10030, 11490, 13099, 14968, 17030
Offset: 0
The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with minima (5,3,1), so y is counted under a(29).
The a(1) = 1 through a(9) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(12) (13) (14) (15) (16) (17) (18)
(23) (24) (25) (26) (27)
(122) (123) (34) (35) (36)
(124) (125) (45)
(133) (134) (126)
(233) (135)
(1223) (144)
(234)
(1224)
(1233)
Includes all strict partitions
A000009.
For identical instead of distinct leaders we have
A115029.
A version for compositions instead of partitions is
A374518, ranks
A374638.
These partitions have ranks
A375398.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums
A374706.
Cf.
A034296,
A141199,
A358830,
A358836,
A358905,
A374704,
A374757,
A374758,
A374761,
A375136,
A375400,
A375401.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
-
A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,(x^i)*prod(j=i+1,N-i,(1-x^(3*j))/(1-x^j)))); Vec(f)}
A_x(51) \\ John Tyler Rascoe, Aug 21 2024
A358908
Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.
Original entry on oeis.org
1, 1, 2, 6, 10, 23, 50, 95, 188, 378, 747, 1414, 2739, 5179, 9811, 18562, 34491, 64131, 118607, 218369, 400196, 731414, 1328069, 2406363, 4346152, 7819549, 14027500, 25090582, 44749372, 79586074, 141214698, 249882141, 441176493, 777107137, 1365801088, 2395427040, 4192702241
Offset: 0
The a(1) = 1 through a(4) = 10 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((11)(1)) ((1)(3))
((3)(1))
((11)(2))
((21)(1))
((111)(1))
This is the distinct case of
A055887 with weakly decreasing lengths.
This is the distinct case is
A141199.
The case of distinct lengths also is
A358836.
This is the case of
A358906 with weakly decreasing lengths.
A001970 counts multiset partitions of integer partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
A358912 counts sequences of partitions with distinct lengths.
A358914 counts twice-partitions into distinct strict partitions.
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],UnsameQ@@#&&GreaterEqual@@Length/@#&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
R(n,v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]}
seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n))) ))} \\ Andrew Howroyd, Dec 31 2022
A358905
Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.
Original entry on oeis.org
1, 1, 3, 6, 13, 24, 49, 91, 179, 341, 664, 1280, 2503, 4872, 9557, 18750, 36927, 72800, 143880, 284660, 564093, 1118911, 2221834, 4415417, 8781591, 17476099, 34799199, 69327512, 138176461, 275503854, 549502119, 1096327380, 2187894634, 4367310138, 8719509111
Offset: 0
The a(0) = 1 through a(4) = 13 sequences:
() ((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((1)(1)) ((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((1)(1)(1)) ((1)(3))
((2)(2))
((3)(1))
((11)(11))
((1)(1)(2))
((1)(2)(1))
((2)(1)(1))
((1)(1)(1)(1))
The case of set partitions is
A038041.
The version for weakly decreasing lengths is
A141199, strictly
A358836.
For equal sums instead of lengths we have
A279787.
The case of plane partitions is
A323429.
The case of constant sums also is
A358833.
A055887 counts sequences of partitions with total sum n.
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ Andrew Howroyd, Dec 31 2022
A358906
Number of finite sequences of distinct integer partitions with total sum n.
Original entry on oeis.org
1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0
The a(1) = 1 through a(4) = 13 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((1)(11)) ((1)(3))
((11)(1)) ((3)(1))
((11)(2))
((1)(21))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the case of
A055887 with distinct partitions.
The case of twice-partitions is
A296122.
The version for sequences of compositions is
A358907.
The case of weakly decreasing lengths is
A358908.
The case of distinct lengths is
A358912.
The version for strict partitions is
A358913, distinct case of
A304969.
A001970 counts multiset partitions of integer partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
-
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 13 2024
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]
A375401
Number of integer partitions of n whose maximal anti-runs do not all have different maxima.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 33, 48, 63, 88, 116, 157, 204, 272, 349, 456, 581, 749, 946, 1205, 1511, 1904, 2371, 2960, 3661, 4538, 5577, 6862, 8389, 10257, 12472, 15164, 18348, 22192, 26731, 32177, 38593, 46254, 55256, 65952, 78500, 93340, 110706
Offset: 0
The partition y = (3,2,2,1) has maximal ant-runs ((3,2),(2,1)), with maxima (3,2), so y is not counted under a(8).
The a(2) = 1 through a(8) = 12 partitions:
(11) (111) (22) (221) (33) (331) (44)
(1111) (2111) (222) (2221) (332)
(11111) (2211) (4111) (2222)
(3111) (22111) (3311)
(21111) (31111) (5111)
(111111) (211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The complement for minima instead of maxima is
A375134, ranks
A375398.
These partitions have Heinz numbers
A375403.
The reverse for identical instead of distinct is
A375405, ranks
A375397.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums
A374706.
Cf.
A034296,
A115029,
A141199,
A279790,
A358830,
A358836,
A374632,
A374761,
A375136,
A375396,
A375400.
-
Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
Showing 1-10 of 18 results.
Comments