cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Comments

These are different from plane partitions.
For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006
Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
		

Crossrefs

The strict case is A296122.
Row sums of A321449.
Column k=2 of A323718.
Without singletons we have A327769, A358828, A358829.
For odd lengths we have A358823, A358824.
For distinct lengths we have A358830, A358912.
For strict partitions see A358914, A382524.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015
  • Mathematica
    Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

Formula

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

A358334 Number of twice-partitions of n into odd-length partitions.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 43, 77, 137, 241, 410, 720, 1209, 2073, 3498, 5883, 9768, 16413, 26978, 44741, 73460, 120462, 196066, 320389, 518118, 839325, 1353283, 2178764, 3490105, 5597982, 8922963, 14228404, 22609823, 35875313, 56756240, 89761600, 141410896, 222675765
Offset: 0

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(0) = 1 through a(5) = 13 twice-partitions:
  ()  ((1))  ((2))     ((3))        ((4))           ((5))
             ((1)(1))  ((111))      ((211))         ((221))
                       ((2)(1))     ((2)(2))        ((311))
                       ((1)(1)(1))  ((3)(1))        ((3)(2))
                                    ((111)(1))      ((4)(1))
                                    ((2)(1)(1))     ((11111))
                                    ((1)(1)(1)(1))  ((111)(2))
                                                    ((211)(1))
                                                    ((2)(2)(1))
                                                    ((3)(1)(1))
                                                    ((111)(1)(1))
                                                    ((2)(1)(1)(1))
                                                    ((1)(1)(1)(1)(1))
		

Crossrefs

For multiset partitions of integer partitions: A356932, ranked by A356935.
For odd length instead of lengths we have A358824.
For odd sums instead of lengths we have A358825.
For odd sums also we have A358827.
For odd length also we have A358834.
A000041 counts integer partitions.
A027193 counts odd-length partitions, ranked by A026424.
A055922 counts partitions with odd multiplicities, also odd parts A117958.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1), -(n+1))} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - A027193(k)*x^k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2022

A358823 Number of odd-length twice-partitions of n into partitions with all odd parts.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 10, 20, 29, 58, 83, 150, 230, 399, 605, 1037, 1545, 2547, 3879, 6241, 9437, 15085, 22622, 35493, 53438, 82943, 124157, 191267, 284997, 434634, 647437, 979293, 1452182, 2185599, 3228435, 4826596, 7112683, 10575699, 15530404, 22990800, 33651222
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.
Also the number of odd-length twice-partitions of n into strict partitions.

Examples

			The a(1) = 1 through a(6) = 10 twice-partitions with all odd parts:
  (1)  (11)  (3)        (31)        (5)              (33)
             (111)      (1111)      (311)            (51)
             (1)(1)(1)  (11)(1)(1)  (11111)          (3111)
                                    (3)(1)(1)        (111111)
                                    (11)(11)(1)      (3)(11)(1)
                                    (111)(1)(1)      (31)(1)(1)
                                    (1)(1)(1)(1)(1)  (11)(11)(11)
                                                     (111)(11)(1)
                                                     (1111)(1)(1)
                                                     (11)(1)(1)(1)(1)
The a(1) = 1 through a(6) = 10 twice-partitions into strict partitions:
  (1)  (2)  (3)        (4)        (5)              (6)
            (21)       (31)       (32)             (42)
            (1)(1)(1)  (2)(1)(1)  (41)             (51)
                                  (2)(2)(1)        (321)
                                  (3)(1)(1)        (2)(2)(2)
                                  (21)(1)(1)       (3)(2)(1)
                                  (1)(1)(1)(1)(1)  (4)(1)(1)
                                                   (21)(2)(1)
                                                   (31)(1)(1)
                                                   (2)(1)(1)(1)(1)
		

Crossrefs

This is the odd-length case of A270995.
Requiring odd sums also gives A279374 aerated.
This is the case of A358824 with all odd parts.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
A358334 counts twice-partitions into odd-length partitions.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Flatten[#]]&]],{n,0,10}]
  • PARI
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A000009(k)*x^k)) - (1/Product_{k>=1} (1+A000009(k)*x^k)))/2. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A358834 Number of odd-length twice-partitions of n into odd-length partitions.

Original entry on oeis.org

0, 1, 1, 3, 3, 8, 11, 24, 35, 74, 109, 213, 336, 624, 986, 1812, 2832, 5002, 7996, 13783, 21936, 37528, 59313, 99598, 158356, 262547, 415590, 684372, 1079576, 1759984, 2779452, 4491596, 7069572, 11370357, 17841534, 28509802, 44668402, 70975399, 110907748
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(6) = 11 twice-partitions:
  (1)  (2)  (3)        (4)        (5)              (6)
            (111)      (211)      (221)            (222)
            (1)(1)(1)  (2)(1)(1)  (311)            (321)
                                  (11111)          (411)
                                  (2)(2)(1)        (21111)
                                  (3)(1)(1)        (2)(2)(2)
                                  (111)(1)(1)      (3)(2)(1)
                                  (1)(1)(1)(1)(1)  (4)(1)(1)
                                                   (111)(2)(1)
                                                   (211)(1)(1)
                                                   (2)(1)(1)(1)(1)
		

Crossrefs

The version for set partitions is A003712.
If the parts are also odd we get A279374.
The version for multiset partitions of integer partitions is the odd-length case of A356932, ranked by A026424 /\ A356935.
This is the odd-length case of A358334.
This is the odd-lengths case of A358824.
For odd sums instead of lengths we have A358826.
The case of odd sums also is the bisection of A358827.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Length/@#]&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A027193(k)*x^k)) - (1/Product_{k>=1} (1+A027193(k)*x^k)))/2. - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2022

A358825 Number of ways to choose a sequence of integer partitions, one of each part of an integer partition of n into odd parts.

Original entry on oeis.org

1, 1, 1, 4, 4, 11, 20, 35, 56, 113, 207, 326, 602, 985, 1777, 3124, 5115, 8523, 15011, 24519, 41571, 71096, 115650, 191940, 320651, 530167, 865781, 1442059, 2358158, 3833007, 6325067, 10243259, 16603455, 27151086, 43734197, 71032191, 115091799, 184492464
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 11 twice-partitions:
  (1)  (1)(1)  (3)        (3)(1)        (5)
               (21)       (21)(1)       (32)
               (111)      (111)(1)      (41)
               (1)(1)(1)  (1)(1)(1)(1)  (221)
                                        (311)
                                        (2111)
                                        (11111)
                                        (3)(1)(1)
                                        (21)(1)(1)
                                        (111)(1)(1)
                                        (1)(1)(1)(1)(1)
		

Crossrefs

For odd parts instead of sums we have A270995.
For distinct instead of odd sums we have A271619.
Requiring odd length, odd lengths, and odd parts gives A279374 aerated.
For odd lengths instead of sums we have A358334.
The odd-length case is A358826.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Total/@#]&]],{n,0,10}]

Formula

G.f.: Product_{k odd} 1/(1-A000041(k)*x^k).

A358826 Number of ways to choose a sequence of partitions, one of each part of an odd-length partition of 2n+1 into odd parts.

Original entry on oeis.org

1, 4, 11, 35, 113, 326, 985, 3124, 8523, 24519, 71096, 191940, 530167, 1442059, 3833007, 10243259, 27151086, 71032191, 184492464, 478339983, 1227208513, 3140958369, 8016016201, 20210235189, 50962894061, 127936646350, 319022819270, 794501931062, 1969154638217
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 11 twice-partitions:
  (1)  (3)        (5)
       (21)       (32)
       (111)      (41)
       (1)(1)(1)  (221)
                  (311)
                  (2111)
                  (11111)
                  (3)(1)(1)
                  (21)(1)(1)
                  (111)(1)(1)
                  (1)(1)(1)(1)(1)
		

Crossrefs

For odd parts instead of length and sums we have A270995.
Requiring odd lengths and odd parts gives A279374 aerated.
This is the case of A358824 with odd sums.
This is the odd-length case (hence odd bisection) of A358825.
For odd lengths (instead of length) we have A358827.
For odd lengths instead of sums we have A358834.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Total/@#]&]],{n,1,15,2}]

A358827 Number of twice-partitions of n into partitions with all odd lengths and sums.

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 11, 19, 27, 51, 83, 128, 208, 324, 542, 856, 1332, 2047, 3371, 5083, 8009, 12545, 19478, 29770, 46038, 70777, 108627, 167847, 255408, 388751, 593475, 901108, 1361840, 2077973, 3125004, 4729056, 7146843, 10732799, 16104511, 24257261, 36305878
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(6) = 11 twice-partitions:
  (1)  (1)(1)  (3)        (3)(1)        (5)              (3)(3)
               (111)      (111)(1)      (221)            (5)(1)
               (1)(1)(1)  (1)(1)(1)(1)  (311)            (111)(3)
                                        (11111)          (221)(1)
                                        (3)(1)(1)        (3)(111)
                                        (111)(1)(1)      (311)(1)
                                        (1)(1)(1)(1)(1)  (111)(111)
                                                         (11111)(1)
                                                         (3)(1)(1)(1)
                                                         (111)(1)(1)(1)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

This is the case of A358334 with odd sums.
This is the case of A358825 with odd lengths.
The case of odd length is the odd bisection.
For odd parts instead of lengths and sums we have A270995.
Requiring odd parts also gives A279374 aerated.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&&OddQ[Times@@Total/@#]&]],{n,0,10}]

Formula

G.f.: Product_{k odd} 1/(1-A027193(k)*x^k).

A358837 Number of odd-length multiset partitions of integer partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 14, 28, 54, 106, 208, 399, 757, 1424, 2642, 4860, 8851, 15991, 28673, 51095, 90454, 159306, 279067, 486598, 844514, 1459625, 2512227, 4307409, 7357347, 12522304, 21238683, 35903463, 60497684, 101625958, 170202949, 284238857, 473356564, 786196353
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 14 multiset partitions:
  {{1}}  {{2}}    {{3}}          {{4}}            {{5}}
         {{1,1}}  {{1,2}}        {{1,3}}          {{1,4}}
                  {{1,1,1}}      {{2,2}}          {{2,3}}
                  {{1},{1},{1}}  {{1,1,2}}        {{1,1,3}}
                                 {{1,1,1,1}}      {{1,2,2}}
                                 {{1},{1},{2}}    {{1,1,1,2}}
                                 {{1},{1},{1,1}}  {{1,1,1,1,1}}
                                                  {{1},{1},{3}}
                                                  {{1},{2},{2}}
                                                  {{1},{1},{1,2}}
                                                  {{1},{2},{1,1}}
                                                  {{1},{1},{1,1,1}}
                                                  {{1},{1,1},{1,1}}
                                                  {{1},{1},{1},{1},{1}}
		

Crossrefs

The version for set partitions is A024429.
These multiset partitions are ranked by A026424.
The version for partitions is A027193.
The version for twice-partitions is A358824.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions, strict A296122.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@Reverse/@IntegerPartitions[n],OddQ[Length[#]]&]],{n,0,10}]
  • PARI
    P(v,y) = {1/prod(k=1, #v, (1 - y*x^k + O(x*x^#v))^v[k])}
    seq(n) = {my(v=vector(n, k, numbpart(k))); (Vec(P(v,1)) - Vec(P(v,-1)))/2} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: ((1/Product_{k>=1} (1-x^k)^A000041(k)) - (1/Product_{k>=1} (1+x^k)^A000041(k))) / 2. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022

A358828 Number of twice-partitions of n with no singletons.

Original entry on oeis.org

1, 0, 1, 2, 5, 8, 19, 30, 68, 111, 229, 380, 799, 1280, 2519, 4325, 8128, 13666, 25758, 43085, 79300, 134571, 240124, 407794, 730398, 1224821, 2152122, 3646566, 6338691, 10657427, 18469865, 30913539, 53108364, 88953395, 151396452, 253098400, 429416589
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(2) = 1 through a(6) = 19 twice-partitions:
  (11)  (21)   (22)      (32)       (33)
        (111)  (31)      (41)       (42)
               (211)     (221)      (51)
               (1111)    (311)      (222)
               (11)(11)  (2111)     (321)
                         (11111)    (411)
                         (21)(11)   (2211)
                         (111)(11)  (3111)
                                    (21111)
                                    (111111)
                                    (21)(21)
                                    (22)(11)
                                    (31)(11)
                                    (111)(21)
                                    (21)(111)
                                    (211)(11)
                                    (111)(111)
                                    (1111)(11)
                                    (11)(11)(11)
		

Crossrefs

The version for multiset partitions of integer partitions is A304966.
Allowing singletons other than (1) gives A358829.
A002865 counts partitions with no 1's.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],FreeQ[Length/@#,1]&]],{n,0,10}]

Formula

G.f.: Product_{k>=1} 1/(1-(A000041(k)-1)*x^k).

A358829 Number of twice-partitions of n with no (1)'s.

Original entry on oeis.org

1, 0, 2, 3, 9, 13, 38, 56, 144, 237, 524, 886, 1961, 3225, 6700, 11702, 23007, 39787, 77647, 133707, 254896, 442736, 820703, 1427446, 2630008, 4535330, 8224819, 14250148, 25513615, 43981753, 78252954, 134323368, 236900355, 406174046, 709886932, 1213934012
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(2) = 2 through a(5) = 13 twice-partitions:
  (2)   (3)    (4)       (5)
  (11)  (21)   (22)      (32)
        (111)  (31)      (41)
               (211)     (221)
               (1111)    (311)
               (2)(2)    (2111)
               (11)(2)   (3)(2)
               (2)(11)   (11111)
               (11)(11)  (21)(2)
                         (3)(11)
                         (111)(2)
                         (21)(11)
                         (111)(11)
		

Crossrefs

The version for multiset partitions of integer partitions is A317911.
Forbidding all singletons gives A358828.
A002865 counts partitions with no 1's.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],FreeQ[Total/@#,1]&]],{n,0,10}]

Formula

G.f.: Product_{k>=2} 1/(1-A000041(k)*x^k).
Showing 1-10 of 10 results.