cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A329559 MM-numbers of multiset clutters (connected weak antichains of multisets).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

A weak antichain of multisets is a multiset of multisets, none of which is a proper subset of any other.

Examples

			The sequence of terms tother with their corresponding clutters begins:
   1: {}              37: {{1,1,2}}            91: {{1,1},{1,2}}
   2: {{}}            41: {{6}}                97: {{3,3}}
   3: {{1}}           43: {{1,4}}             101: {{1,6}}
   5: {{2}}           47: {{2,3}}             103: {{2,2,2}}
   7: {{1,1}}         49: {{1,1},{1,1}}       107: {{1,1,4}}
   9: {{1},{1}}       53: {{1,1,1,1}}         109: {{10}}
  11: {{3}}           59: {{7}}               113: {{1,2,3}}
  13: {{1,2}}         61: {{1,2,2}}           121: {{3},{3}}
  17: {{4}}           67: {{8}}               125: {{2},{2},{2}}
  19: {{1,1,1}}       71: {{1,1,3}}           127: {{11}}
  23: {{2,2}}         73: {{2,4}}             131: {{1,1,1,1,1}}
  25: {{2},{2}}       79: {{1,5}}             137: {{2,5}}
  27: {{1},{1},{1}}   81: {{1},{1},{1},{1}}   139: {{1,7}}
  29: {{1,3}}         83: {{9}}               149: {{3,4}}
  31: {{5}}           89: {{1,1,1,2}}         151: {{1,1,2,2}}
		

Crossrefs

Connected numbers are A305078.
Stable numbers are A316476.
Clutters (of sets) are A048143.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],And[stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]<=1]&]

Formula

Equals {1} followed by the intersection of A305078 and A316476.

A339113 Products of primes of squarefree semiprime index (A322551).

Original entry on oeis.org

1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
Also MM-numbers of labeled multigraphs (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins:
      1: {}               233: {{2,7}}          487: {{2,11}}
     13: {{1,2}}          257: {{3,5}}          491: {{1,15}}
     29: {{1,3}}          269: {{2,8}}          499: {{3,8}}
     43: {{1,4}}          271: {{1,10}}         559: {{1,2},{1,4}}
     47: {{2,3}}          293: {{1,11}}         577: {{1,16}}
     73: {{2,4}}          313: {{3,6}}          607: {{2,12}}
     79: {{1,5}}          347: {{2,9}}          611: {{1,2},{2,3}}
    101: {{1,6}}          373: {{1,12}}         631: {{3,9}}
    137: {{2,5}}          377: {{1,2},{1,3}}    647: {{1,17}}
    139: {{1,7}}          389: {{4,5}}          653: {{4,7}}
    149: {{3,4}}          421: {{1,13}}         673: {{1,18}}
    163: {{1,8}}          439: {{3,7}}          677: {{2,13}}
    167: {{2,6}}          443: {{1,14}}         727: {{2,14}}
    169: {{1,2},{1,2}}    449: {{2,10}}         751: {{4,8}}
    199: {{1,9}}          467: {{4,6}}          757: {{1,19}}
		

Crossrefs

These primes (of squarefree semiprime index) are listed by A322551.
The strict (squarefree) case is A309356.
The prime instead of squarefree semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of squarefree semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The semiprime instead of squarefree semiprime version:
primes: A106349
products: A339112
strict: A340020
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A002100 counts partitions into squarefree semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices, which are listed by A112798.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A339561 lists products of distinct squarefree semiprimes (ranking: A339560).
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
    Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]

A382077 Number of integer partitions of n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240306 at a(14) = 76, A240306(14) = 77.
First differs from A381992 at a(17) = 171, A381992(17) = 170.

Examples

			For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

Factorizations of this type are counted by A050345.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Normal multiset partitions of this type are counted by A116539.
The MM-numbers of these multiset partitions are A302494.
Twice-partitions of this type are counted by A358914.
For distinct block-sums instead of blocks we have A381992, ranked by A382075.
The complement is counted by A382078, unique A382079.
These partitions are ranked by A382200, complement A293243.
For normal multisets instead of integer partitions we have A382214, complement A292432.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A382078 Number of integer partitions of n that cannot be partitioned into a set of sets.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 126, 168, 207, 266, 343, 428, 534, 675, 832, 1039, 1279, 1575, 1933, 2381, 2881, 3524, 4269, 5179, 6237, 7525, 9033, 10860, 12969, 15512, 18475, 22005, 26105, 30973, 36642, 43325, 51078, 60184, 70769, 83152
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2025

Keywords

Comments

First differs from A240309 at a(11) = 23, A240309(11) = 25.
First differs from A381990 at a(17) = 126, A381990(17) = 127.

Examples

			The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways:
  {{1},{1,2},{1,2}}
  {{1},{1},{2},{1,2}}
  {{1},{1},{1},{2},{2}}
But none of these is itself a set, so y is counted under a(7).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For normal multisets see A292432, A292444, A116539.
These partitions are ranked by A293243, complement A382200.
The MM-numbers of these multiset partitions (set of sets) are A302494.
Twice-partitions of this type are counted by A358914.
For distinct sums we have A381990 (ranks A381806), complement A381992 (ranks A382075).
The complement is counted by A382077, unique A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions into distinct sets, complement A050345.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}]

Extensions

a(19)-a(50) from Bert Dobbelaere, Mar 29 2025

A382075 Numbers whose prime indices can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2025

Keywords

Comments

First differs from A212167 in having 3600.
First differs from A335433 in lacking 72.
First differs from A339741 in having 1080.
First differs from A345172 in lacking 72.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers that can be written as a product of squarefree numbers with distinct sums of prime indices.

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets with distinct sums, so 1080 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
These are positions of terms > 0 in A381633, see A321469, A381078, A381634.
For constant instead of strict blocks see A381635, A381636, A381716.
Normal multiset partitions into sets with distinct sums are counted by A381718.
The complement is A381806, counted by A381990.
The case of a unique choice is A381870, counted by A382079, see A382078.
Partitions of this type are counted by A381992.
For distinct blocks instead of block-sums we have A382200, complement A293243.
MM-numbers of multiset partitions into sets with distinct sums are A382201.
Normal multisets of this type are counted by A382216, see also A382214.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Select[Range[100],Length[Select[mps[prix[#]], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]

A382200 Numbers that can be written as a product of distinct squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

First differs from A339741 in having 1080.
First differs from A382075 in having 18000.
These are positions of positive terms in A050326, complement A293243.
Also numbers whose prime indices can be partitioned into distinct sets.
Differs from A212167, which does not include 18000 = 2^4*3^2*5^3, for example. - R. J. Mathar, Mar 23 2025

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets, so 1080 is in the sequence.
We have 18000 = 2*5*6*10*30, so 18000 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
Normal multisets not of this type are counted by A292432, strong A292444.
The complement is A293243, counted by A050342.
The case of a unique choice is A293511.
MM-numbers of multiset partitions into distinct sets are A302494.
For distinct block-sums instead of blocks we have A382075, counted by A381992.
Partitions of this type are counted by A382077, complement A382078.
Normal multisets of this type are counted by A382214, strong A381996.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
          S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    remove(t -> A[t]=0, [$1..N]); # Robert Israel, Apr 21 2025
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[sqfacs[#]]>0&]

A328514 MM-numbers of connected sets of sets.

Original entry on oeis.org

1, 2, 3, 5, 11, 13, 17, 29, 31, 39, 41, 43, 47, 59, 65, 67, 73, 79, 83, 87, 101, 109, 113, 127, 129, 137, 139, 149, 157, 163, 167, 179, 181, 191, 195, 199, 211, 233, 235, 237, 241, 257, 269, 271, 277, 283, 293, 303, 313, 317, 319, 331, 339, 347, 349, 353, 365
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence all connected set of sets together with their MM-numbers begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
  11: {{3}}
  13: {{1,2}}
  17: {{4}}
  29: {{1,3}}
  31: {{5}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  59: {{7}}
  65: {{2},{1,2}}
  67: {{8}}
  73: {{2,4}}
  79: {{1,5}}
  83: {{9}}
  87: {{1},{1,3}}
		

Crossrefs

The not-necessarily-connected case is A302494.
BII-numbers of connected set-systems are A326749.
MM-numbers of connected sets of multisets are A328513.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[1000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&]

Formula

Intersection of A302494 and A305078.

A339112 Products of primes of semiprime index (A106349).

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.
Also MM-numbers of labeled multigraphs with loops (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
     1:            149:   (34)     313:     (36)
     7:   (11)     161: (11)(22)   329:   (11)(23)
    13:   (12)     163:   (18)     343: (11)(11)(11)
    23:   (22)     167:   (26)     347:     (29)
    29:   (13)     169: (12)(12)   373:     (1C)
    43:   (14)     199:   (19)     377:   (12)(13)
    47:   (23)     203: (11)(13)   389:     (45)
    49: (11)(11)   227:   (44)     421:     (1D)
    73:   (24)     233:   (27)     439:     (37)
    79:   (15)     257:   (35)     443:     (1E)
    91: (11)(12)   269:   (28)     449:     (2A)
    97:   (33)     271:   (1A)     467:     (46)
   101:   (16)     293:   (1B)     487:     (2B)
   137:   (25)     299: (12)(22)   491:     (1F)
   139:   (17)     301: (11)(14)   499:     (38)
		

Crossrefs

These primes (of semiprime index) are listed by A106349.
The strict (squarefree) case is A340020.
The prime instead of semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The squarefree semiprime instead of semiprime version:
strict: A309356
primes: A322551
products: A339113
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A056239 gives the sum of prime indices, which are listed by A112798.
A084126 and A084127 give the prime factors of semiprimes.
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A338898, A338912, and A338913 give the prime indices of semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Maple
    N:= 1000: # for terms up to N
    SP:= {}: p:= 1:
    for i from 1 do
      p:= nextprime(p);
      if 2*p > N then break fi;
      Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
      SP:= SP union Q;
    od:
    SP:= sort(convert(SP,list)):
    PSP:= map(ithprime,SP):
    R:= {1}:
    for p in PSP do
      Rp:= {}:
      for k from 1 while p^k <= N do
        Rpk:= select(`<=`,R, N/p^k);
        Rp:= Rp union map(`*`,Rpk, p^k);
      od;
      R:= R union Rp;
    od:
    sort(convert(R,list)); # Robert Israel, Nov 03 2024
  • Mathematica
    semiQ[n_]:=PrimeOmega[n]==2;
    Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]

A340019 MM-numbers of labeled graphs with half-loops, without isolated vertices.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a half-loop is an edge with only one vertex, to be distinguished from a full loop, which has two equal vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are either themselves prime or a squarefree semiprime (A006881).

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
     1: {}              55: {{2},{3}}      137: {{2,5}}
     3: {{1}}           59: {{7}}          139: {{1,7}}
     5: {{2}}           65: {{2},{1,2}}    141: {{1},{2,3}}
    11: {{3}}           67: {{8}}          143: {{3},{1,2}}
    13: {{1,2}}         73: {{2,4}}        145: {{2},{1,3}}
    15: {{1},{2}}       79: {{1,5}}        149: {{3,4}}
    17: {{4}}           83: {{9}}          155: {{2},{5}}
    29: {{1,3}}         85: {{2},{4}}      157: {{12}}
    31: {{5}}           87: {{1},{1,3}}    163: {{1,8}}
    33: {{1},{3}}       93: {{1},{5}}      165: {{1},{2},{3}}
    39: {{1},{1,2}}    101: {{1,6}}        167: {{2,6}}
    41: {{6}}          109: {{10}}         177: {{1},{7}}
    43: {{1,4}}        123: {{1},{6}}      179: {{13}}
    47: {{2,3}}        127: {{11}}         187: {{3},{4}}
    51: {{1},{4}}      129: {{1},{1,4}}    191: {{14}}
		

Crossrefs

The version with full loops covering an initial interval is A320461.
The case covering an initial interval is A340018.
The version with full loops is A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]

A382201 MM-numbers of sets of sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 39, 41, 43, 47, 51, 55, 58, 59, 62, 65, 66, 67, 73, 78, 79, 82, 83, 85, 86, 87, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 129, 130, 134, 137, 139, 141, 145, 146, 149, 155, 157, 158, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

First differs from A302494 in lacking 143, corresponding to the multiset partition {{1,2},{3}}.
Also products of prime numbers of squarefree index such that the factors all have distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  17: {{4}}
  22: {{},{3}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
  34: {{},{4}}
  39: {{1},{1,2}}
		

Crossrefs

Set partitions of this type are counted by A275780.
Twice-partitions of this type are counted by A279785.
For just sets of sets we have A302478.
For distinct blocks instead of block-sums we have A302494.
For equal instead of distinct sums we have A302497.
For just distinct sums we have A326535.
For normal multiset partitions see A326519, A326533, A326537, A381718.
Factorizations of this type are counted by A381633. See also A001055, A045778, A050320, A050326, A321455, A321469, A382080.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@SquareFreeQ/@prix[#]&&UnsameQ@@Total/@prix/@prix[#]&]

Formula

Equals A302478 /\ A326535.
Showing 1-10 of 36 results. Next