A329559
MM-numbers of multiset clutters (connected weak antichains of multisets).
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227
Offset: 1
The sequence of terms tother with their corresponding clutters begins:
1: {} 37: {{1,1,2}} 91: {{1,1},{1,2}}
2: {{}} 41: {{6}} 97: {{3,3}}
3: {{1}} 43: {{1,4}} 101: {{1,6}}
5: {{2}} 47: {{2,3}} 103: {{2,2,2}}
7: {{1,1}} 49: {{1,1},{1,1}} 107: {{1,1,4}}
9: {{1},{1}} 53: {{1,1,1,1}} 109: {{10}}
11: {{3}} 59: {{7}} 113: {{1,2,3}}
13: {{1,2}} 61: {{1,2,2}} 121: {{3},{3}}
17: {{4}} 67: {{8}} 125: {{2},{2},{2}}
19: {{1,1,1}} 71: {{1,1,3}} 127: {{11}}
23: {{2,2}} 73: {{2,4}} 131: {{1,1,1,1,1}}
25: {{2},{2}} 79: {{1,5}} 137: {{2,5}}
27: {{1},{1},{1}} 81: {{1},{1},{1},{1}} 139: {{1,7}}
29: {{1,3}} 83: {{9}} 149: {{3,4}}
31: {{5}} 89: {{1,1,1,2}} 151: {{1,1,2,2}}
Cf.
A056239,
A112798,
A289509,
A302242,
A302494,
A304716,
A318991,
A319837,
A320275,
A320456,
A328514,
A329553,
A329555.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],And[stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]<=1]&]
A339113
Products of primes of squarefree semiprime index (A322551).
Original entry on oeis.org
1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1
The sequence of terms together with the corresponding multigraphs begins:
1: {} 233: {{2,7}} 487: {{2,11}}
13: {{1,2}} 257: {{3,5}} 491: {{1,15}}
29: {{1,3}} 269: {{2,8}} 499: {{3,8}}
43: {{1,4}} 271: {{1,10}} 559: {{1,2},{1,4}}
47: {{2,3}} 293: {{1,11}} 577: {{1,16}}
73: {{2,4}} 313: {{3,6}} 607: {{2,12}}
79: {{1,5}} 347: {{2,9}} 611: {{1,2},{2,3}}
101: {{1,6}} 373: {{1,12}} 631: {{3,9}}
137: {{2,5}} 377: {{1,2},{1,3}} 647: {{1,17}}
139: {{1,7}} 389: {{4,5}} 653: {{4,7}}
149: {{3,4}} 421: {{1,13}} 673: {{1,18}}
163: {{1,8}} 439: {{3,7}} 677: {{2,13}}
167: {{2,6}} 443: {{1,14}} 727: {{2,14}}
169: {{1,2},{1,2}} 449: {{2,10}} 751: {{4,8}}
199: {{1,9}} 467: {{4,6}} 757: {{1,19}}
These primes (of squarefree semiprime index) are listed by
A322551.
The strict (squarefree) case is
A309356.
The prime instead of squarefree semiprime version:
The nonprime instead of squarefree semiprime version:
The semiprime instead of squarefree semiprime version:
A002100 counts partitions into squarefree semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A339561 lists products of distinct squarefree semiprimes (ranking:
A339560).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]
A339112
Products of primes of semiprime index (A106349).
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1
The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
1: 149: (34) 313: (36)
7: (11) 161: (11)(22) 329: (11)(23)
13: (12) 163: (18) 343: (11)(11)(11)
23: (22) 167: (26) 347: (29)
29: (13) 169: (12)(12) 373: (1C)
43: (14) 199: (19) 377: (12)(13)
47: (23) 203: (11)(13) 389: (45)
49: (11)(11) 227: (44) 421: (1D)
73: (24) 233: (27) 439: (37)
79: (15) 257: (35) 443: (1E)
91: (11)(12) 269: (28) 449: (2A)
97: (33) 271: (1A) 467: (46)
101: (16) 293: (1B) 487: (2B)
137: (25) 299: (12)(22) 491: (1F)
139: (17) 301: (11)(14) 499: (38)
These primes (of semiprime index) are listed by
A106349.
The strict (squarefree) case is
A340020.
The prime instead of semiprime version:
The nonprime instead of semiprime version:
The squarefree semiprime instead of semiprime version:
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of
A338916).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
N:= 1000: # for terms up to N
SP:= {}: p:= 1:
for i from 1 do
p:= nextprime(p);
if 2*p > N then break fi;
Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
SP:= SP union Q;
od:
SP:= sort(convert(SP,list)):
PSP:= map(ithprime,SP):
R:= {1}:
for p in PSP do
Rp:= {}:
for k from 1 while p^k <= N do
Rpk:= select(`<=`,R, N/p^k);
Rp:= Rp union map(`*`,Rpk, p^k);
od;
R:= R union Rp;
od:
sort(convert(R,list)); # Robert Israel, Nov 03 2024
-
semiQ[n_]:=PrimeOmega[n]==2;
Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]
A340019
MM-numbers of labeled graphs with half-loops, without isolated vertices.
Original entry on oeis.org
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 55: {{2},{3}} 137: {{2,5}}
3: {{1}} 59: {{7}} 139: {{1,7}}
5: {{2}} 65: {{2},{1,2}} 141: {{1},{2,3}}
11: {{3}} 67: {{8}} 143: {{3},{1,2}}
13: {{1,2}} 73: {{2,4}} 145: {{2},{1,3}}
15: {{1},{2}} 79: {{1,5}} 149: {{3,4}}
17: {{4}} 83: {{9}} 155: {{2},{5}}
29: {{1,3}} 85: {{2},{4}} 157: {{12}}
31: {{5}} 87: {{1},{1,3}} 163: {{1,8}}
33: {{1},{3}} 93: {{1},{5}} 165: {{1},{2},{3}}
39: {{1},{1,2}} 101: {{1,6}} 167: {{2,6}}
41: {{6}} 109: {{10}} 177: {{1},{7}}
43: {{1,4}} 123: {{1},{6}} 179: {{13}}
47: {{2,3}} 127: {{11}} 187: {{3},{4}}
51: {{1},{4}} 129: {{1},{1,4}} 191: {{14}}
The version with full loops covering an initial interval is
A320461.
The case covering an initial interval is
A340018.
The version with full loops is
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
A340020
MM-numbers of labeled graphs with loops, without isolated vertices.
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 161: {{1,1},{2,2}} 347: {{2,9}}
7: {{1,1}} 163: {{1,8}} 373: {{1,12}}
13: {{1,2}} 167: {{2,6}} 377: {{1,2},{1,3}}
23: {{2,2}} 199: {{1,9}} 389: {{4,5}}
29: {{1,3}} 203: {{1,1},{1,3}} 421: {{1,13}}
43: {{1,4}} 227: {{4,4}} 439: {{3,7}}
47: {{2,3}} 233: {{2,7}} 443: {{1,14}}
73: {{2,4}} 257: {{3,5}} 449: {{2,10}}
79: {{1,5}} 269: {{2,8}} 467: {{4,6}}
91: {{1,1},{1,2}} 271: {{1,10}} 487: {{2,11}}
97: {{3,3}} 293: {{1,11}} 491: {{1,15}}
101: {{1,6}} 299: {{1,2},{2,2}} 499: {{3,8}}
137: {{2,5}} 301: {{1,1},{1,4}} 511: {{1,1},{2,4}}
139: {{1,7}} 313: {{3,6}} 553: {{1,1},{1,5}}
149: {{3,4}} 329: {{1,1},{2,3}} 559: {{1,2},{1,4}}
The case with only one edge is
A106349.
The case covering an initial interval is
A320461.
The version allowing multiple edges is
A339112.
The half-loop version covering an initial interval is
A340018.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]
A329552
Smallest MM-number of a connected set of n sets.
Original entry on oeis.org
1, 2, 39, 195, 5655, 62205, 2674815
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
39: {{1},{1,2}}
195: {{1},{2},{1,2}}
5655: {{1},{2},{1,2},{1,3}}
62205: {{1},{2},{3},{1,2},{1,3}}
2674815: {{1},{2},{3},{1,2},{1,3},{1,4}}
MM-numbers of connected set-systems are
A328514.
The weight of the system with MM-number n is
A302242(n).
Maximum connected divisor is
A327076.
BII-numbers of connected sets of sets are
A326749.
The smallest BII-number of a connected set of n sets is
A329625(n).
Allowing edges to have repeated vertices gives
A329553.
Requiring the edges to form an antichain gives
A329555.
The smallest MM-number of a set of n nonempty sets is
A329557(n).
Cf.
A048143,
A056239,
A112798,
A302494,
A304714,
A304716,
A305079,
A322389,
A328513,
A329554,
A329556,
A329558.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&];
Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}]
A329555
Smallest MM-number of a clutter (connected antichain) of n distinct sets.
Original entry on oeis.org
1, 2, 377, 16211, 761917
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
377: {{1,2},{1,3}}
16211: {{1,2},{1,3},{1,4}}
761917: {{1,2},{1,3},{1,4},{2,3}}
Spanning cutters of distinct sets are counted by
A048143.
MM-numbers of connected weak-antichains are
A329559.
MM-numbers of sets of sets are
A302494.
The smallest BII-number of a clutter with n edges is
A329627.
Not requiring the edges to form an antichain gives
A329552.
Cf.
A056239,
A112798,
A302242,
A319837,
A320275,
A322113,
A327076,
A328514,
A329552,
A329558,
A329560,
A329561.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
A340018
MM-numbers of labeled graphs with half-loops covering an initial interval of positive integers, without isolated vertices.
Original entry on oeis.org
1, 3, 13, 15, 39, 65, 141, 143, 145, 165, 195, 377, 429, 435, 611, 705, 715, 1131, 1363, 1551, 1595, 1833, 1885, 1937, 2021, 2117, 2145, 2235, 2365, 2397, 2409, 2431, 2465, 2805, 3055, 4089, 4147, 4785, 5655, 5811, 6063, 6149, 6235, 6351, 6409, 6721, 6815
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {}
3: {{1}}
13: {{1,2}}
15: {{1},{2}}
39: {{1},{1,2}}
65: {{2},{1,2}}
141: {{1},{2,3}}
143: {{3},{1,2}}
145: {{2},{1,3}}
165: {{1},{2},{3}}
195: {{1},{2},{1,2}}
377: {{1,2},{1,3}}
429: {{1},{3},{1,2}}
435: {{1},{2},{1,3}}
611: {{1,2},{2,3}}
705: {{1},{2},{2,3}}
715: {{2},{3},{1,2}}
1131: {{1},{1,2},{1,3}}
The version with full loops is
A320461.
The version not necessarily covering an initial interval is
A340019.
MM-numbers of graphs with loops are
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
A328513
Connected squarefree numbers.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 195
Offset: 1
The sequence of all connected sets of multisets together with their MM-numbers (A302242) begins:
1: {}
2: {{}}
3: {{1}}
5: {{2}}
7: {{1,1}}
11: {{3}}
13: {{1,2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
37: {{1,1,2}}
39: {{1},{1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
53: {{1,1,1,1}}
57: {{1},{1,1,1}}
These are Heinz numbers of the partitions counted by
A304714.
The maximum connected squarefree divisor of n is
A327398(n).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
Select[Range[100],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&]
A327398
Maximum connected squarefree divisor of n.
Original entry on oeis.org
1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 21, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 39, 5, 41, 21, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 57, 29, 59, 5, 61, 31, 21, 2, 65, 11, 67, 17, 23, 7, 71, 3, 73, 37
Offset: 1
The connected squarefree divisors of 189 are {1, 3, 7, 21}, so a(189) = 21.
The maximum connected divisor of n is
A327076(n).
The maximum squarefree divisor of n is
A007947(n).
Connected squarefree numbers are
A328513.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
Table[Max[Select[Divisors[n],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&]],{n,100}]
Showing 1-10 of 15 results.
Comments