A293243 Numbers that cannot be written as a product of distinct squarefree numbers.
4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1
Keywords
Examples
120 is not in the sequence because 120 = 2*6*10. 3600 is not in the sequence because 3600 = 2*6*10*30.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms <= N A:= Vector(N): A[1]:= 1: for n from 2 to N do if numtheory:-issqrfree(n) then S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S] fi; od: select(t -> A[t]=0, [$1..N]); # Robert Israel, Oct 10 2017
-
Mathematica
nn=500; sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; Select[Range[nn],Length[sqfacs[#]]===0&]
Comments