A050361 Number of factorizations into distinct prime powers greater than 1.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1
Offset: 1
Examples
From _Gus Wiseman_, Jul 30 2022: (Start) The A000688(216) = 9 factorizations of 216 into prime powers are: (2*2*2*3*3*3) (2*2*2*3*9) (2*2*2*27) (2*3*3*3*4) (2*3*4*9) (2*4*27) (3*3*3*8) (3*8*9) (8*27) Of these, the a(216) = 4 strict cases are: (2*3*4*9) (2*4*27) (3*8*9) (8*27) (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000 (first 10000 terms from Reinhard Zumkeller)
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Haskell
a050361 = product . map a000009 . a124010_row -- Reinhard Zumkeller, Aug 28 2014
-
Maple
A050361 := proc(n) local a,f; if n = 1 then 1; else a := 1 ; for f in ifactors(n)[2] do a := a*A000009(op(2,f)) ; end do: end if; end proc: # R. J. Mathar, May 25 2017
-
Mathematica
Table[Times @@ PartitionsQ[Last /@ FactorInteger[n]], {n, 99}] (* Arkadiusz Wesolowski, Feb 27 2017 *)
-
PARI
A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s)); A050361(n) = factorback(apply(A000009,factor(n)[,2])); \\ Antti Karttunen, Nov 17 2019
Formula
Dirichlet g.f.: Product_{n is a prime power >1}(1 + 1/n^s).
Multiplicative with a(p^e) = A000009(e).
a(A002110(k))=1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.26020571070524171076..., where f(x) = (1-x) * Product_{k>=1} (1 + x^k). - Amiram Eldar, Oct 03 2023
Comments