cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A050361 Number of factorizations into distinct prime powers greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The number of unordered factorizations of n into 1 and exponentially odd prime powers, i.e., p^e where p is a prime and e is odd (A246551). - Amiram Eldar, Jun 12 2025

Examples

			From _Gus Wiseman_, Jul 30 2022: (Start)
The A000688(216) = 9 factorizations of 216 into prime powers are:
  (2*2*2*3*3*3)
  (2*2*2*3*9)
  (2*2*2*27)
  (2*3*3*3*4)
  (2*3*4*9)
  (2*4*27)
  (3*3*3*8)
  (3*8*9)
  (8*27)
Of these, the a(216) = 4 strict cases are:
  (2*3*4*9)
  (2*4*27)
  (3*8*9)
  (8*27)
(End)
		

Crossrefs

Cf. A124010.
This is the strict case of A000688.
Positions of 1's are A004709, complement A046099.
The case of primes (instead of prime-powers) is A008966, non-strict A000012.
The non-strict additive version allowing 1's A023893, ranked by A302492.
The non-strict additive version is A023894, ranked by A355743.
The additive version (partitions) is A054685, ranked by A356065.
The additive version allowing 1's is A106244, ranked by A302496.
A001222 counts prime-power divisors.
A005117 lists all squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists all prime-powers (A000961 includes 1), towers A164336.
A296131 counts twice-factorizations of type PQR, non-strict A295935.

Programs

  • Haskell
    a050361 = product . map a000009 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    A050361 := proc(n)
        local a,f;
        if n = 1 then
            1;
        else
            a := 1 ;
            for f in ifactors(n)[2] do
                a := a*A000009(op(2,f)) ;
            end do:
        end if;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    Table[Times @@ PartitionsQ[Last /@ FactorInteger[n]], {n, 99}] (* Arkadiusz Wesolowski, Feb 27 2017 *)
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A050361(n) = factorback(apply(A000009,factor(n)[,2])); \\ Antti Karttunen, Nov 17 2019

Formula

Dirichlet g.f.: Product_{n is a prime power >1}(1 + 1/n^s).
Multiplicative with a(p^e) = A000009(e).
a(A002110(k))=1.
a(n) = A050362(A101296(n)). - R. J. Mathar, May 26 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.26020571070524171076..., where f(x) = (1-x) * Product_{k>=1} (1 + x^k). - Amiram Eldar, Oct 03 2023

A355743 Numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 31, 33, 35, 41, 45, 49, 51, 53, 55, 57, 59, 63, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 105, 109, 115, 119, 121, 123, 125, 127, 131, 133, 135, 147, 153, 155, 157, 159, 161, 165, 171, 175, 177, 179, 187
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also MM-numbers of multiset partitions into constant multisets, where the multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices begin:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  31: {11}
  33: {2,5}
  35: {3,4}
  41: {13}
  45: {2,2,3}
		

Crossrefs

The multiplicative version is A000688, strict A050361, coprime A354911.
The case of only primes (not all prime-powers) is A076610, strict A302590.
Allowing prime index 1 gives A302492.
These are the products of elements of A302493.
Requiring n to be a prime-power gives A302601.
These are the positions of 1's in A355741.
The squarefree case is A356065.
The complement is A356066.
A001222 counts prime-power divisors.
A023894 counts ptns into prime-powers, strict A054685, with 1's A023893.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@PrimePowerQ/@primeMS[#]&]

A339113 Products of primes of squarefree semiprime index (A322551).

Original entry on oeis.org

1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
Also MM-numbers of labeled multigraphs (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins:
      1: {}               233: {{2,7}}          487: {{2,11}}
     13: {{1,2}}          257: {{3,5}}          491: {{1,15}}
     29: {{1,3}}          269: {{2,8}}          499: {{3,8}}
     43: {{1,4}}          271: {{1,10}}         559: {{1,2},{1,4}}
     47: {{2,3}}          293: {{1,11}}         577: {{1,16}}
     73: {{2,4}}          313: {{3,6}}          607: {{2,12}}
     79: {{1,5}}          347: {{2,9}}          611: {{1,2},{2,3}}
    101: {{1,6}}          373: {{1,12}}         631: {{3,9}}
    137: {{2,5}}          377: {{1,2},{1,3}}    647: {{1,17}}
    139: {{1,7}}          389: {{4,5}}          653: {{4,7}}
    149: {{3,4}}          421: {{1,13}}         673: {{1,18}}
    163: {{1,8}}          439: {{3,7}}          677: {{2,13}}
    167: {{2,6}}          443: {{1,14}}         727: {{2,14}}
    169: {{1,2},{1,2}}    449: {{2,10}}         751: {{4,8}}
    199: {{1,9}}          467: {{4,6}}          757: {{1,19}}
		

Crossrefs

These primes (of squarefree semiprime index) are listed by A322551.
The strict (squarefree) case is A309356.
The prime instead of squarefree semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of squarefree semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The semiprime instead of squarefree semiprime version:
primes: A106349
products: A339112
strict: A340020
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A002100 counts partitions into squarefree semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices, which are listed by A112798.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A339561 lists products of distinct squarefree semiprimes (ranking: A339560).
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
    Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]

A339112 Products of primes of semiprime index (A106349).

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.
Also MM-numbers of labeled multigraphs with loops (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
     1:            149:   (34)     313:     (36)
     7:   (11)     161: (11)(22)   329:   (11)(23)
    13:   (12)     163:   (18)     343: (11)(11)(11)
    23:   (22)     167:   (26)     347:     (29)
    29:   (13)     169: (12)(12)   373:     (1C)
    43:   (14)     199:   (19)     377:   (12)(13)
    47:   (23)     203: (11)(13)   389:     (45)
    49: (11)(11)   227:   (44)     421:     (1D)
    73:   (24)     233:   (27)     439:     (37)
    79:   (15)     257:   (35)     443:     (1E)
    91: (11)(12)   269:   (28)     449:     (2A)
    97:   (33)     271:   (1A)     467:     (46)
   101:   (16)     293:   (1B)     487:     (2B)
   137:   (25)     299: (12)(22)   491:     (1F)
   139:   (17)     301: (11)(14)   499:     (38)
		

Crossrefs

These primes (of semiprime index) are listed by A106349.
The strict (squarefree) case is A340020.
The prime instead of semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The squarefree semiprime instead of semiprime version:
strict: A309356
primes: A322551
products: A339113
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A056239 gives the sum of prime indices, which are listed by A112798.
A084126 and A084127 give the prime factors of semiprimes.
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A338898, A338912, and A338913 give the prime indices of semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Maple
    N:= 1000: # for terms up to N
    SP:= {}: p:= 1:
    for i from 1 do
      p:= nextprime(p);
      if 2*p > N then break fi;
      Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
      SP:= SP union Q;
    od:
    SP:= sort(convert(SP,list)):
    PSP:= map(ithprime,SP):
    R:= {1}:
    for p in PSP do
      Rp:= {}:
      for k from 1 while p^k <= N do
        Rpk:= select(`<=`,R, N/p^k);
        Rp:= Rp union map(`*`,Rpk, p^k);
      od;
      R:= R union Rp;
    od:
    sort(convert(R,list)); # Robert Israel, Nov 03 2024
  • Mathematica
    semiQ[n_]:=PrimeOmega[n]==2;
    Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]

A340019 MM-numbers of labeled graphs with half-loops, without isolated vertices.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a half-loop is an edge with only one vertex, to be distinguished from a full loop, which has two equal vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are either themselves prime or a squarefree semiprime (A006881).

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
     1: {}              55: {{2},{3}}      137: {{2,5}}
     3: {{1}}           59: {{7}}          139: {{1,7}}
     5: {{2}}           65: {{2},{1,2}}    141: {{1},{2,3}}
    11: {{3}}           67: {{8}}          143: {{3},{1,2}}
    13: {{1,2}}         73: {{2,4}}        145: {{2},{1,3}}
    15: {{1},{2}}       79: {{1,5}}        149: {{3,4}}
    17: {{4}}           83: {{9}}          155: {{2},{5}}
    29: {{1,3}}         85: {{2},{4}}      157: {{12}}
    31: {{5}}           87: {{1},{1,3}}    163: {{1,8}}
    33: {{1},{3}}       93: {{1},{5}}      165: {{1},{2},{3}}
    39: {{1},{1,2}}    101: {{1,6}}        167: {{2,6}}
    41: {{6}}          109: {{10}}         177: {{1},{7}}
    43: {{1,4}}        123: {{1},{6}}      179: {{13}}
    47: {{2,3}}        127: {{11}}         187: {{3},{4}}
    51: {{1},{4}}      129: {{1},{1,4}}    191: {{14}}
		

Crossrefs

The version with full loops covering an initial interval is A320461.
The case covering an initial interval is A340018.
The version with full loops is A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]

A340020 MM-numbers of labeled graphs with loops, without isolated vertices.

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a loop is an edge with two equal vertices, distinguished from a half-loop, which has only one vertex.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are semiprimes, where a semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
      1: {}              161: {{1,1},{2,2}}    347: {{2,9}}
      7: {{1,1}}         163: {{1,8}}          373: {{1,12}}
     13: {{1,2}}         167: {{2,6}}          377: {{1,2},{1,3}}
     23: {{2,2}}         199: {{1,9}}          389: {{4,5}}
     29: {{1,3}}         203: {{1,1},{1,3}}    421: {{1,13}}
     43: {{1,4}}         227: {{4,4}}          439: {{3,7}}
     47: {{2,3}}         233: {{2,7}}          443: {{1,14}}
     73: {{2,4}}         257: {{3,5}}          449: {{2,10}}
     79: {{1,5}}         269: {{2,8}}          467: {{4,6}}
     91: {{1,1},{1,2}}   271: {{1,10}}         487: {{2,11}}
     97: {{3,3}}         293: {{1,11}}         491: {{1,15}}
    101: {{1,6}}         299: {{1,2},{2,2}}    499: {{3,8}}
    137: {{2,5}}         301: {{1,1},{1,4}}    511: {{1,1},{2,4}}
    139: {{1,7}}         313: {{3,6}}          553: {{1,1},{1,5}}
    149: {{3,4}}         329: {{1,1},{2,3}}    559: {{1,2},{1,4}}
		

Crossrefs

The case with only one edge is A106349.
The case covering an initial interval is A320461.
The version allowing multiple edges is A339112.
The half-loop version covering an initial interval is A340018.
The half-loop version is A340019.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]

A356065 Squarefree numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 31, 33, 35, 41, 51, 53, 55, 57, 59, 67, 69, 77, 83, 85, 93, 95, 97, 103, 105, 109, 115, 119, 123, 127, 131, 133, 155, 157, 159, 161, 165, 177, 179, 187, 191, 201, 205, 209, 211, 217, 227, 231, 241, 249, 253, 255, 265, 277
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Examples

			105 has prime indices {2,3,4}, all three of which are prime-powers, so 105 is in the sequence.
		

Crossrefs

The multiplicative version (factorizations) is A050361, non-strict A000688.
Heinz numbers of the partitions counted by A054685, with 1's A106244, non-strict A023894, non-strict with 1's A023893.
Counting twice-partitions of this type gives A279786, non-strict A279784.
Counting twice-factorizations gives A295935, non-strict A296131.
These are the odd products of distinct elements of A302493.
Allowing prime index 1 gives A302496, non-strict A302492.
The case of primes (instead of prime-powers) is A302590, non-strict A076610.
These are the squarefree positions of 1's in A355741.
This is the squarefree case of A355743, complement A356066.
A001222 counts prime-power divisors.
A005117 lists the squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&And@@PrimePowerQ/@primeMS[#]&]

Formula

Intersection of A005117 and A355743.

A329631 Irregular triangle read by rows where row n lists the prime indices of the n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 6, 1, 4, 2, 3, 7, 8, 2, 4, 1, 5, 9, 1, 6, 10, 1, 2, 3, 11, 2, 5, 1, 7, 3, 4, 12, 1, 8, 2, 6, 13, 1, 2, 4, 14, 1, 9, 15, 2, 7, 16, 3, 5, 2, 8, 1, 10, 17, 18, 1, 11, 3, 6, 1, 2, 5, 19, 2, 9, 1, 3, 4, 20, 21, 1, 12, 4, 5, 1, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1: {}         33: {2,5}      66: {1,2,5}     97: {25}
   2: {1}        34: {1,7}      67: {19}       101: {26}
   3: {2}        35: {3,4}      69: {2,9}      102: {1,2,7}
   5: {3}        37: {12}       70: {1,3,4}    103: {27}
   6: {1,2}      38: {1,8}      71: {20}       105: {2,3,4}
   7: {4}        39: {2,6}      73: {21}       106: {1,16}
  10: {1,3}      41: {13}       74: {1,12}     107: {28}
  11: {5}        42: {1,2,4}    77: {4,5}      109: {29}
  13: {6}        43: {14}       78: {1,2,6}    110: {1,3,5}
  14: {1,4}      46: {1,9}      79: {22}       111: {2,12}
  15: {2,3}      47: {15}       82: {1,13}     113: {30}
  17: {7}        51: {2,7}      83: {23}       114: {1,2,8}
  19: {8}        53: {16}       85: {3,7}      115: {3,9}
  21: {2,4}      55: {3,5}      86: {1,14}     118: {1,17}
  22: {1,5}      57: {2,8}      87: {2,10}     119: {4,7}
  23: {9}        58: {1,10}     89: {24}       122: {1,18}
  26: {1,6}      59: {17}       91: {4,6}      123: {2,13}
  29: {10}       61: {18}       93: {2,11}     127: {31}
  30: {1,2,3}    62: {1,11}     94: {1,15}     129: {2,14}
  31: {11}       65: {3,6}      95: {3,8}      130: {1,3,6}
		

Crossrefs

Row sums are A319246.
Row lengths are A072047.
Same as A319247 with rows reversed.
Composition of A000720 and A265668.
Looking at all numbers instead of just squarefree numbers gives A112798.

Programs

  • Mathematica
    Table[PrimePi/@First/@If[k==1,{},FactorInteger[k]],{k,Select[Range[30],SquareFreeQ]}]

A346068 Numbers that are the product of distinct primes with prime subscripts raised to prime powers.

Original entry on oeis.org

1, 9, 25, 27, 121, 125, 225, 243, 289, 675, 961, 1089, 1125, 1331, 1681, 2187, 2601, 3025, 3125, 3267, 3375, 3481, 4489, 4913, 6075, 6889, 7225, 7803, 8649, 11881, 11979, 15125, 15129, 16129, 24025, 24649, 25947, 27225, 28125, 29403, 29791, 30375, 31329, 32041, 33275, 34969
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2021

Keywords

Examples

			675 = 3^3 * 5^2 = prime(prime(1))^prime(2) * prime(prime(2))^prime(1), therefore 675 is a term.
		

Crossrefs

Intersection of A056166 and A076610.

Programs

  • Mathematica
    Join[{1}, Select[Range[35000], AllTrue[Join[PrimePi[(t = Transpose @ FactorInteger[#])[[1]]], t[[2]]], PrimeQ] &]] (* Amiram Eldar, Jul 30 2021 *)
  • Python
    from sympy import factorint, isprime, primepi
    def ok(n):
        f = factorint(n)
        if not all(isprime(e) for e in f.values()): return False
        return all(isprime(primepi(p)) for p in f)
    print(list(filter(ok, range(35000)))) # Michael S. Branicky, Jul 30 2021

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + Sum_{q prime} 1/p^q) = 1.2271874... - Amiram Eldar, Jul 31 2021

A339360 Sum of all squarefree numbers with greatest prime factor prime(n).

Original entry on oeis.org

1, 2, 9, 60, 504, 6336, 89856, 1645056, 33094656, 801239040, 24246190080, 777550233600, 29697402470400, 1250501433753600, 55083063155097600, 2649111037319577600, 143390180403000115200, 8619643674791667302400, 534710099148093259776000, 36412881178052121329664000
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2020

Keywords

Examples

			The initial terms are:
   1 = 1,
   2 = 2,
   9 = 3 + 6,
  60 = 5 + 10 + 15 + 30.
		

Crossrefs

A010036 takes prime indices here to binary indices, row sums of A209862.
A048672 takes prime indices to binary indices in squarefree numbers.
A054640 divides the n-th term by prime(n), row sums of A261144.
A072047 counts prime factors of squarefree numbers.
A339194 is the restriction to semiprimes, row sums of A339116.
A339195 has this as row sums.
A002110 lists primorials.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A056239 is the sum of prime indices of n (Heinz weight).
A246867 groups squarefree numbers by weight, with row sums A147655.
A319246 is the sum of prime indices of the n-th squarefree number.
A319247 lists reversed prime indices of squarefree numbers.
A329631 lists prime indices of squarefree numbers.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.

Programs

  • Maple
    f:= proc(n) local i;
      `if`(n=0, 1, ithprime(n)) *mul(1+ithprime(i),i=1..n-1)
    end proc:
    map(f, [$0..20]); # Robert Israel, Dec 08 2020
  • Mathematica
    Table[Sum[Times@@Prime/@stn,{stn,Select[Subsets[Range[n]],MemberQ[#,n]&]}],{n,10}]

Formula

For n >= 1, a(n) = A054640(n-1) * prime(n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 08 2025
Showing 1-10 of 23 results. Next