cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A074139 Number of divisors of A036035(n,k).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64, 8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128, 9, 16, 21, 24, 25, 28, 36, 40, 45, 48, 48, 60, 64, 72, 81, 80, 96, 108, 128, 144, 192, 256
Offset: 0

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Examples

			Express A036035(n,k) by its prime signature; add one to each exponent, then multiply: 180 = (2^2)*(3^2)*(5^1) therefore the number of divisors is (2+1)*(2+1)*(1+1)= 18
From _Michel Marcus_, Nov 11 2015: (Start)
As an irregular triangle, whose n-th row has A000041(n) terms, sequence begins:
  1;
  2;
  3,  4;
  4,  6,  8;
  5,  8,  9, 12, 16;
  6, 10, 12, 16, 18, 24, 32;
  ...
(End)
		

Crossrefs

Row sums give A074141.

Programs

  • PARI
    tabf(nn) = {for (n=1, nn, forpart(p=n, print1(prod(k=1, #p, (1+p[k])), ", ")); print(););} \\ Michel Marcus, Nov 11 2015

Formula

T(n,k) = A000005(A036035(n,k)). - R. J. Mathar, Aug 28 2018

Extensions

More terms from Alford Arnold, Sep 17 2002
Term ordering corrected by Alois P. Heinz, Aug 21 2019

A093936 Table T(n,k) read by rows which contains in row n and column k the sum of A001055(A036035(n,j)) over all column indices j where A036035(n,j) has k distinct prime factors.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 16, 11, 15, 7, 28, 47, 36, 52, 11, 79, 156, 166, 135, 203, 15, 134, 408, 588, 667, 566, 877, 22, 328, 1057, 2358, 2517, 2978, 2610, 4140, 30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147, 42, 1197, 6826, 21336, 40130, 53690, 61421
Offset: 1

Views

Author

Alford Arnold, May 23 2004

Keywords

Comments

Sequence A050322 calculates factorizations indexed by prime signatures: A001055(A025487) For example, A050322(36) = A001055(A025487(36)) = 74 and A050322(43) = A001055(A024487(43)) = 92.
Note that A093936 can be readily extended by combining appropriate values from A096443. Row sums of A093936 yield A035310 and embedded sequences include A000041, A035098 and A000110. - Alford Arnold, Nov 19 2005

Examples

			a(19) = 166 because A001055(840) + A001055(1260) = 74 + 92.
Row n=4 of A036035 contains 16=2^4, 24=2^3*3, 36=2^2*3^2, 60=2^2*3*5 and 210=2*3*5*7. The 16 has k=1 distinct prime factor; 24 and 36 have k=2 distinct prime factors; 60 has k=3 distinct prime factors; 210 has k=4 distinct prime factors (see A001221).
T(4,1)=A001055(16)=5.
T(4,2)=A001055(24)+A001055(36)=7+9=16.
T(4,3)=A001055(60)=11.
T(4,4)=A001055(210)=15.
Table starts
1;
2, 2;
3, 4, 5;
5, 16, 11, 15;
7, 28, 47, 36, 52;
11, 79, 156, 166, 135, 203;
15, 134, 408, 588, 667, 566, 877;
22, 328, 1057, 2358, 2517, 2978, 2610, 4140;
30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147;
42, 1197, 6826, 21336, 40130, 53690, 61421, 76908, 70631, 115975;
...
		

Crossrefs

Programs

  • Maple
    A036035 := proc(n) local pr,L,a ; a := [] ; pr := combinat[partition](n) ; for L in pr do mul(ithprime(i)^op(-i,L),i=1..nops(L)) ; a := [op(a),%] ; od ; RETURN(a) ; end: A001221 := proc(n) local ifacts ; ifacts := ifactors(n)[2] ; nops(ifacts) ; end: listProdRep := proc(n,mincomp) local dvs,resul,f,i,rli ; resul := 0 ; if n = 1 then RETURN(1) elif n >= mincomp then dvs := numtheory[divisors](n) ; for i from 1 to nops(dvs) do f := op(i,dvs) ; if f =n and f >= mincomp then resul := resul+1 ; elif f >= mincomp then rli := listProdRep(n/f,f) ; resul := resul+rli ; fi ; od ; fi ; RETURN(resul) ; end: A001055 := proc(n) listProdRep(n,2) ; end: A093936 := proc(n,k) local a, a036035,j ; a := 0 ; a036035 := A036035(n) ; for j in a036035 do if A001221(j) = k then a := a+A001055(j) ; fi ; od ; RETURN(a) ; end: for n from 1 to 10 do for k from 1 to n do printf("%d,",A093936(n,k)) ; od : od : # R. J. Mathar, Jul 27 2007

Extensions

More terms from Alford Arnold, Nov 19 2005
More terms from R. J. Mathar, Jul 27 2007

A129305 Encodes multisets of least prime signatures in reverse-lex order: replace A036035 with A080688 then calculate all possible factorizations of the resulting values, recode each factor using A064553(n) and then multiply the terms.

Original entry on oeis.org

1, 2, 4, 5, 6, 11, 8, 10, 17, 12, 15, 22, 31, 42, 69, 77, 86, 109, 16, 20, 25, 34, 47, 24, 30, 44, 55, 51, 62, 83, 36, 45, 66, 76, 95, 121, 93, 118, 149, 84, 105, 138, 154, 172, 215, 253, 201, 217, 218, 277, 546, 834, 861, 897, 994, 1001, 1118, 1529, 1633, 1763, 1041
Offset: 0

Views

Author

Alford Arnold, May 02 2007

Keywords

Comments

Sequence A035310 counts the values in each subtable and illustrates relationships with A000041, A000079, A000110 etc. Sequence A096443 counts the values associated with each least prime signature. (Cf. A025487 and A036035.)

Examples

			The encoded values can be arranged in tabular form based on the number of factors and the associated numeric partitions as indicated below:
2..................................................
.....4.....5........................................
.....6.....11........................................
...............8.....10.....17.........................
...............12....15.....31.........................
.....................22..............................
...............42....69.....109.........................
.....................77..............................
.....................86..............................
.................................16.....20.....25.....34.....47
.................................24.....30.....55.....51.....83
........................................44............62.....
.................................36.....45.....95.....93.....149
........................................66.....121...118.....
........................................76...............
.................................84.....105.....215.....201.....277
........................................138.....253.....217.....
........................................154.............218.....
........................................172...............
................................546.....834.....1529.....1041.....1289
........................................861.....1633.....1138.....
........................................897.....1763.....1253.....
........................................994..............1417.....
........................................1001...............
........................................1118...............
		

Crossrefs

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A118914 Table of the prime signatures (sorted lists of exponents of distinct prime factors) of the positive integers.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 6, 1, 1
Offset: 2

Views

Author

Eric W. Weisstein, May 05 2006

Keywords

Comments

Since the prime factorization of 1 is the empty product (i.e., the multiplicative identity, 1), it follows that the prime signature of 1 is the empty multiset { }. (Cf. http://oeis.org/wiki/Prime_signature)
MathWorld wrongly defines the prime signature of 1 as {1}, which is actually the prime signature of primes.
The sequences A025487, A036035, A046523 consider the prime signatures of 1 and 2 to be distinct, implying { } for 1 and {1} for 2.
Since the prime signature of n is a partition of Omega(n), also true for Omega(1) = 0, the order of exponents is only a matter of convention (using reverse sorted lists of exponents would create a different sequence).
Here the multisets of nonzero exponents are sorted in increasing order; it is slightly more common to order them, as the parts of partitions, in decreasing order. This yields A212171. - M. F. Hasler, Oct 12 2018

Examples

			The table starts:
  n : prime signature of n  (factorization of n)
  1 : {},                   (empty product)
  2 : {1},                  (2^1)
  3 : {1},                  (3^1)
  4 : {2},                  (2^2)
  5 : {1},                  (5^1)
  6 : {1, 1},               (2^1 * 3^1)
  7 : {1},                  (5^1)
  8 : {3},                  (2^3)
  9 : {2},                  (3^2)
  10 : {1, 1},              (2^1 * 5^1)
  11 : {1},                 (11^1)
  12 : {1, 2},              (2^2 * 3^1, but exponents are sorted increasingly)
  etc.
		

Crossrefs

Cf. A124010.
Cf. A001221 (row lengths), A001222 (row sums).

Programs

  • Haskell
    import Data.List (sort)
    a118914 n k = a118914_tabf !! (n-2) !! (k-1)
    a118914_row n = a118914_tabf !! (n-2)
    a118914_tabf = map sort $ tail a124010_tabf
    -- Reinhard Zumkeller, Mar 23 2014
    
  • Mathematica
    primeSignature[n_] := Sort[ FactorInteger[n] , #1[[2]] < #2[[2]]&][[All, 2]]; Flatten[ Table[ primeSignature[n], {n, 2, 65}]](* Jean-François Alcover, Nov 16 2011 *)
  • PARI
    A118914_row(n)=vecsort(factor(n)[,2]~) \\ M. F. Hasler, Oct 12 2018

Extensions

Corrected and edited by Daniel Forgues, Dec 22 2010

A181821 a(n) = smallest integer with factorization as Product p(i)^e(i) such that Product p(e(i)) = n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 30, 36, 24, 32, 60, 64, 48, 72, 210, 128, 180, 256, 120, 144, 96, 512, 420, 216, 192, 900, 240, 1024, 360, 2048, 2310, 288, 384, 432, 1260, 4096, 768, 576, 840, 8192, 720, 16384, 480, 1800, 1536, 32768, 4620, 1296, 1080, 1152, 960, 65536
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

A permutation of A025487. a(n) is the member m of A025487 such that A181819(m) = n. a(n) is also the member of A025487 whose prime signature is conjugate to the prime signature of A108951(n).
If n = Product_i prime(e(i)) with the e(i) weakly decreasing, then a(n) = Product_i prime(i)^e(i). For example, 90 = prime(3) * prime(2) * prime(2) * prime(1), so a(90) = prime(1)^3 * prime(2)^2 * prime(3)^2 * prime(4)^1 = 12600. - Gus Wiseman, Jan 02 2019

Examples

			The canonical factorization of 24 is 2^3*3^1. Therefore, p(e(i)) = prime(3)*prime(1)(i.e., A000040(3)*A000040(1)), which equals 5*2 = 10. Since 24 is the smallest integer for which p(e(i)) = 10, a(10) = 24.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(sort(map(i->
                 numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 05 2018
  • Mathematica
    With[{s = Array[If[# == 1, 1, Times @@ Map[Prime@ Last@ # &, FactorInteger@ #]] &, 2^16]}, Array[First@ FirstPosition[s, #] &, LengthWhile[Differences@ Union@ s, # == 1 &]]] (* Michael De Vlieger, Dec 17 2018 *)
    Table[Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,30}] (* Gus Wiseman, Jan 02 2019 *)
  • PARI
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); }; \\ Antti Karttunen, Dec 10 2018
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A181821(n): return prod(prime(i)**e for i, e in enumerate(sorted(map(primepi,factorint(n,multiple=True)),reverse=True),1)) # Chai Wah Wu, Sep 15 2023

Formula

If A108951(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A108951(n))).
a(A181819(n)) = A046523(n). - [See also A124859]. Antti Karttunen, Dec 10 2018
a(n) = A025487(A361808(n)). - Pontus von Brömssen, Mar 25 2023
a(n) = A108951(A122111(n)). - Antti Karttunen, Sep 15 2023

Extensions

Definition corrected by Gus Wiseman, Jan 02 2019

A048996 Irregular triangle read by rows. Preferred multisets: numbers refining A007318 using format described in A036038.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 2, 2, 3, 3, 4, 1, 1, 2, 2, 1, 3, 6, 1, 4, 6, 5, 1, 1, 2, 2, 2, 3, 6, 3, 3, 4, 12, 4, 5, 10, 6, 1, 1, 2, 2, 2, 1, 3, 6, 6, 3, 3, 4, 12, 6, 12, 1, 5, 20, 10, 6, 15, 7, 1, 1, 2, 2, 2, 2, 3, 6, 6, 3, 3, 6, 1, 4, 12, 12, 12, 12, 4, 5, 20, 10, 30, 5, 6, 30, 20, 7, 21, 8, 1
Offset: 0

Views

Author

Keywords

Comments

This array gives in row n>=1 the multinomial numbers (call them M_0 numbers) m!/product((a_j)!,j=1..n) with the exponents of the partitions of n with number of parts m:=sum(a_j,j=1..n), given in the Abramowitz-Stegun order. See p. 831 of the given reference. See also the arrays for the M_1, M_2 and M_3 multinomial numbers A036038, A036039 and A036040 (or A080575).
For a signed version see A111786.
These M_0 multinomial numbers give the number of compositions of n >= 1 with parts corresponding to the partitions of n (in A-St order). See an n = 5 example below. The triangle with the summed entries of like number of parts m is A007318(n-1, m-1) (Pascal). - Wolfdieter Lang, Jan 29 2021

Examples

			Table starts:
[1]
[1]
[1, 1]
[1, 2, 1]
[1, 2, 1, 3, 1]
[1, 2, 2, 3, 3, 4, 1]
[1, 2, 2, 1, 3, 6, 1, 4, 6,  5, 1]
[1, 2, 2, 2, 3, 6, 3, 3, 4, 12, 4, 5, 10, 6, 1]
.
T(5,6) = 4 because there are four multisets using the first four digits {0,1,2,3}: 32100, 32110, 32210 and 33210
T(5,6) = 4 because there are 4 compositions of 5 that can be formed from the partition 2+1+1+1. - _Geoffrey Critzer_, May 19 2013
These 4 compositions 2+1+1+1, 1+2+1+1, 1+1+2+1 and 1+1+1+2 of 5 correspond to the 4 set partitions of [5] :={1,2,3,4,5}, with 4 blocks of consecutive numbers, namely {1,2},{3},{4},{5} and {1},{2,3},{4},{5} and {1},{2},{3,4},{5} and {1},{2},{3},{4,5}. - _Wolfdieter Lang_, May 30 2018
		

Crossrefs

Cf. A000670, A007318, A036035, A036038, A019538, A115621, A309004, A000079 (row sums), A000041 (row lengths).

Programs

  • Maple
    nmax:=9: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036040(n, m) := (add(q(t), t=1..n))!/(mul(q(t)!, t=1..n)); od: od: seq(seq(A036040(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
  • PARI
    C(sig)={my(S=Set(sig)); (#sig)!/prod(k=1, #S, (#select(t->t==S[k], sig))!)}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 7, print(Row(n))) } \\ Andrew Howroyd, Oct 18 2020
  • SageMath
    from collections import Counter
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A048996_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [factorial(len(p))//h(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A048996_row(n)) # Peter Luschny, Nov 02 2019 [corrected on notice from Sean A. Irvine, Apr 30 2022]
    

Formula

T(n,k) = A036040(n,k) * Factorial(A036043(n,k)) / A036038(n,k) = A049019(n,k) / A036038(n,k).
If the n-th partition is P, a(n) is the multinomial coefficient of the signature of P. - Franklin T. Adams-Watters, May 30 2006
T(n,k) = A309004(A036035(n,k)). - Andrew Howroyd, Oct 19 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001
a(0)=1 prepended by Andrew Howroyd, Oct 19 2020

A063008 Canonical partition sequence (see A080577) encoded by prime factorization. The partition [p1,p2,p3,...] with p1 >= p2 >= p3 >= ... is encoded as 2^p1 * 3^p2 * 5^p3 * ... .

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 240, 216, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 480, 432, 720, 1680, 1080, 1800, 2520, 9240, 6300, 13860, 60060, 510510, 256, 384, 576, 960, 864, 1440, 3360
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 02 2001

Keywords

Comments

Partitions are ordered first by sum. Then all partitions of n are viewed as exponent tuples on n variables and their corresponding monomials are ordered reverse lexicographically. This gives a canonical ordering: [] [1] [2,0] [1,1] [3,0,0] [2,1,0] [1,1,1] [4,0,0,0] [3,1,0,0] [2,2,0,0] [2,1,1,0] [1,1,1,1]... Rearrangement of A025487, A036035 etc.
Or, least integer of each prime signature; resorted in accordance with the integer partitions described in A080577. - Alford Arnold, Feb 13 2008

Examples

			Partition [2,1,1,1] for n=5 gives 2^2*3*5*7 = 420.
The sequence begins:
   1;
   2;
   4,  6;
   8, 12,  30;
  16, 24,  36,  60, 210;
  32, 48,  72, 120, 180, 420, 2310;
  64, 96, 144, 240, 216, 360,  840, 900, 1260, 4620, 30030;
  ...
		

Crossrefs

Cf. A001222 (bigomega), A025487, A059901.
See A080576 Maple (graded reflected lexicographic) ordering.
See A080577 Mathematica (graded reverse lexicographic) ordering.
See A036036 "Abramowitz and Stegun" (graded reflected colexicographic) ordering.
See A036037 for graded colexicographic ordering.

Programs

  • Maple
    with(combinat): A063008_row := proc(n) local e,w,r;
    r := proc(L) local B,i; B := NULL;
    for i from nops(L) by -1 to 1 do
    B := B,L[i] od; [%] end:
    w := proc(e) local i, m, p, P; m := infinity;
    P := permute([seq(ithprime(i),i=1..nops(e))]);
    for p in P do m := min(m,mul(p[i]^e[i],i=1..nops(e))) od end:
    [seq(w(e), e = r(partition(n)))] end:
    seq(print(A063008_row(i)),i=0..6); # Peter Luschny, Jan 23 2011
    # second Maple program:
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> mul(ithprime(i)^x[i], i=1..nops(x)), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    row[n_] := Product[ Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n]; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 10 2012 *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]},Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    T[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n];
    T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)

Formula

bigomega(T(n,k)) = n. - Andrew Howroyd, Mar 28 2020

Extensions

Partially edited by N. J. A. Sloane, May 15, at the suggestion of R. J. Mathar
Corrected and (minor) edited by Daniel Forgues, Jan 03 2011

A085987 Product of exactly four primes, three of which are distinct (p^2*q*r).

Original entry on oeis.org

60, 84, 90, 126, 132, 140, 150, 156, 198, 204, 220, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 444, 460, 476, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 726
Offset: 1

Views

Author

Alford Arnold, Jul 08 2003

Keywords

Comments

A014613 is completely determined by A030514, A065036, A085986, A085987 and A046386 since p(4) = 5. (cf. A000041). More generally, the first term of sequences which completely determine the k-almost primes can be found in A036035 (a resorted version of A025487).
A050326(a(n)) = 4. - Reinhard Zumkeller, May 03 2013

Examples

			a(1) = 60 since 60 = 2*2*3*5 and has three distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2}; Select[Range[2000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    pefp[{a_,b_,c_}]:={a^2 b c,a b^2 c,a b c^2}; Module[{upto=800},Select[ Flatten[ pefp/@Subsets[Prime[Range[PrimePi[upto/6]]],{3}]]//Union,#<= upto&]] (* Harvey P. Dale, Oct 02 2018 *)
  • PARI
    list(lim)=my(v=List(),t,x,y,z);forprime(p=2,lim^(1/4),t=lim\p^2;forprime(q=p+1,sqrtint(t),forprime(r=q+1,t\q,x=p^2*q*r;y=p*q^2*r;listput(v,x);if(y<=lim,listput(v,y);z=p*q*r^2;if(z<=lim,listput(v,z))))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    is(n)=vecsort(factor(n)[,2]~)==[1,1,2] \\ Charles R Greathouse IV, Oct 19 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A085987(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**2)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))-primepi(integer_nthroot(x,4)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

More terms from Reinhard Zumkeller, Jul 25 2003

A074141 Sum of products of parts increased by 1 in all partitions of n.

Original entry on oeis.org

1, 2, 7, 18, 50, 118, 301, 684, 1621, 3620, 8193, 17846, 39359, 84198, 181313, 383208, 811546, 1695062, 3546634, 7341288, 15207022, 31261006, 64255264, 131317012, 268336125, 545858260, 1110092387, 2250057282, 4558875555, 9213251118, 18613373708, 37529713890
Offset: 0

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

Replace each term in A036035 by the number of its divisors as in A074139; sequence gives sum of terms in the n-th row.
This is the sum of the number of submultisets of the multisets with n elements; a part of a partition is a frequency of such an element. - George Beck, Nov 01 2011

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products when parts are increased by 1 are 5,8,9,12,16 and their sum is a(4) = 50.
		

Crossrefs

Row sums of A074139 and of A079025 and of A079308 and of A238963.
Column k=2 of A261718.
Cf. A267008.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          2^n, b(n, i-1) +(1+i)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 07 2014
  • Mathematica
    Table[Plus @@ Times @@@ (IntegerPartitions[n] + 1), {n, 0, 28}] (* T. D. Noe, Nov 01 2011 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, (1+i) * b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */

Formula

G.f.: 1/Product_{m>0} (1-(m+1)*x^m).
a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*(d+1)^(k/d).
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2, (k+1)*S(n-k,k))+(n+1), S(n,n)=n+1, S(0,m)=1, S(n,m)=0 for nVladimir Kruchinin, Sep 07 2014
a(n) ~ c * 2^n, where c = Product_{k>=2} 1/(1-(k+1)/2^k) = 18.56314656361011472747535423226928404842588594722907068201... = A256155. - Vaclav Kotesovec, Sep 11 2014, updated May 10 2021

Extensions

More terms from Alford Arnold, Sep 17 2002
More terms, better description and formulas from Vladeta Jovovic, Vladimir Baltic, Nov 28 2002
Showing 1-10 of 36 results. Next