cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A000612 Number of P-equivalence classes of switching functions of n or fewer variables, divided by 2.

Original entry on oeis.org

1, 2, 6, 40, 1992, 18666624, 12813206169137152, 33758171486592987164087845043830784, 1435913805026242504952006868879460423834904914948818373264705576411070464
Offset: 0

Views

Author

Keywords

Comments

Also number of nonisomorphic sets of nonempty subsets of an n-set.
Equivalently, number of nonisomorphic fillings of a Venn diagram of n sets. - Joerg Arndt, Mar 24 2020
Number of hypergraphs on n unlabeled nodes. - Charles R Greathouse IV, Apr 06 2021

Examples

			Non-isomorphic representatives of the a(2) = 6 set-systems are 0, {1}, {12}, {1}{2}, {1}{12}, {1}{2}{12}. - _Gus Wiseman_, Aug 07 2018
		

References

  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 153.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 Table 2.3.2. - Row 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= n-> add(1/(p-> mul((c-> j^c*c!)(coeff(p, x, j)), j=1..degree(p)))(
            add(x^i, i=l))*2^((w-> add(mul(2^igcd(t, l[i]), i=1..nops(l)),
            t=1..w)/w)(ilcm(l[]))), l=combinat[partition](n))/2:
    seq(a(n), n=0..9);  # Alois P. Heinz, Aug 12 2019
  • Mathematica
    sysnorm[{}] := {};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Subsets[Rest[Subsets[Range[n]]]]]],{n,4}] (* Gus Wiseman, Aug 07 2018 *)
    a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}]/2;
    a /@ Range[0, 9] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz *)
  • Python
    def partition(n, I=1):
      yield () if n==0 else (n,)
      for i in range(I, n//2 + 1):
        for p in partition(n-i, i):
          yield (i,) + p
    def a(n):
      import math, operator, functools
      fracs = [(1<<(sum(functools.reduce(operator.mul, (1<Gregory Morse, Dec 23 2024

Formula

a(n) = A003180(n)/2.

Extensions

More terms from Vladeta Jovovic, Feb 23 2000

A319559 Number of non-isomorphic T_0 set systems of weight n.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 16, 35, 82, 200, 517, 1373, 3867, 11216, 33910, 105950
Offset: 0

Views

Author

Gus Wiseman, Sep 23 2018

Keywords

Comments

In a set system, two vertices are equivalent if in every block the presence of the first is equivalent to the presence of the second. The T_0 condition means that there are no equivalent vertices.
The weight of a set system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set systems:
1:        {{1}}
2:      {{1},{2}}
3:     {{2},{1,2}}
      {{1},{2},{3}}
4:    {{1,3},{2,3}}
     {{1},{2},{1,2}}
     {{1},{3},{2,3}}
    {{1},{2},{3},{4}}
5:  {{1},{2,4},{3,4}}
    {{2},{3},{1,2,3}}
    {{2},{1,3},{2,3}}
    {{3},{1,3},{2,3}}
   {{1},{2},{3},{2,3}}
   {{1},{2},{4},{3,4}}
  {{1},{2},{3},{4},{5}}
		

Crossrefs

Extensions

a(11)-a(15) from Bert Dobbelaere, May 04 2025

A317791 Number of non-isomorphic multiset partitions of the multiset of prime indices of n (row n of A112798).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 3, 1, 7, 2, 2, 2, 7, 1, 2, 2, 7, 1, 3, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 9, 1, 2, 4, 11, 2, 3, 1, 4, 2, 3, 1, 16, 1, 2, 4, 4, 2, 3, 1, 12, 5, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Dec 03 2018
Are any terms of the complement known? In particular, does this sequence contain 6? - Gus Wiseman, Oct 21 2022

Examples

			Non-isomorphic representatives of the a(42) = 3 multiset partitions are {{1,2,4}}, {{1},{2,4}}, {{1},{2},{4}}.
Non-isomorphic representatives of the a(60) = 9 multiset partitions:
  {1123},
  {1}{123}, {2}{113}, {11}{23}, {12}{13},
  {1}{1}{23}, {1}{2}{13}, {2}{3}{11},
  {1}{1}{2}{3}.
Missing from this list are {3}{112} and {1}{3}{12}, which are isomorphic to {2}{113} and {1}{2}{13} respectively.
For n = 180 = 2^2 * 3^2 * 5, there are A001055(180) = 26 different factorizations to one or more factors larger than 1. Of these 18 are such that by swapping 2 and 3 in each factor of that factorization the result is another, different factorization of 180, while the other 8 cases are such that 2 <-> 3 swap doesn't change the factorization. Thus a(180) = 18/2 + 8 = 17. - _Antti Karttunen_, Dec 03 2018
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    sysnorm[{}] := {};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[sysnorm/@mps[primeMS[n]]]],{n,100}]

Formula

For all n, a(n) <= A001055(n). - Antti Karttunen, Dec 01 2018
If n is squarefree with k prime factors, or if n = p^k for p prime, we have a(n) = A000041(k).
a(n) = A318285(A181819(n)). - Andrew Howroyd, Jan 17 2023

Extensions

Terms corrected by Gus Wiseman, Dec 04 2018

A319765 Number of non-isomorphic intersecting multiset partitions of weight n whose dual is also an intersecting multiset partition.

Original entry on oeis.org

1, 1, 3, 6, 15, 31, 74, 156, 358, 792, 1821
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{2},{1,2}}
   {{1},{1},{1}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,2,2}}
   {{1,2,3,3}}
   {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{3},{1,2,3}}
   {{1,1},{1,1}}
   {{1,2},{1,2}}
   {{1,2},{2,2}}
   {{1},{1},{1,1}}
   {{2},{2},{1,2}}
   {{1},{1},{1},{1}}
		

Crossrefs

A317752 Number of multiset partitions of normal multisets of size n such that the blocks have empty intersection.

Original entry on oeis.org

0, 1, 8, 49, 305, 1984, 13686, 100124, 776885, 6386677, 55532358, 509549386, 4921352952, 49899820572, 529807799836, 5876162077537, 67928460444139, 816764249684450, 10195486840926032, 131896905499007474, 1765587483656124106, 24419774819813602870
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(3) = 8 multiset partitions with empty intersection:
  {{2},{1,1}}
  {{1},{2,2}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{1},{2}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,allnorm[n]}]],{n,6}]
  • PARI
    P(n,k)={1/prod(i=1, n, (1 - x^i*y + O(x*x^n))^binomial(k+i-1, k-1))}
    R(n,k)={my(p=P(n,k), q=p/(1-y+O(y*y^n))); Vec(sum(i=2, n, polcoef(p,i,y) + polcoef(q,i,y)*sum(j=1, n\i, (-1)^j*binomial(k,j)*x^(i*j))), -n)}
    seq(n)={sum(k=2, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Feb 05 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 05 2021

A317755 Number of multiset partitions of strongly normal multisets of size n such that the blocks have empty intersection.

Original entry on oeis.org

0, 1, 6, 30, 130, 629, 2930, 15019, 78224, 438626, 2548481
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(3) = 6 strongly normal multiset partitions with empty intersection:
  {{2},{1,1}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{1},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]],{n,6}]

Extensions

a(10)-a(11) from Robert Price, May 08 2021

A317794 Number of non-isomorphic set-systems on n vertices with no singletons.

Original entry on oeis.org

1, 1, 2, 8, 180, 612032, 200253854316544, 263735716028826427534807159537664, 5609038300883759793482640992086670066760184863720423808367168537493504
Offset: 0

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 8 set-systems:
  0,
  {12}, {123},
  {12}{13}, {12}{123},
  {12}{13}{23}, {12}{13}{123},
  {12}{13}{23}{123}.
		

Crossrefs

Programs

  • Mathematica
    sysnorm[{}] := {};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]>1&]],Or[Length[#]==0,Union@@#==Range[Max@@Union@@#]]&]]],{n,4}]
    (* second program *)
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{2,n}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length]/n!,{prm,Permutations[Range[n]]}],{n,6}] (* Gus Wiseman, Dec 12 2018 *)

Formula

a(n) = A000616(n) - A000370(n). - Tilman Piesk, Apr 14 2025

Extensions

More terms from Gus Wiseman, Dec 12 2018

A319759 Number of non-isomorphic intersecting multiset partitions of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 2, 13, 49, 199
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(8) = 13 multiset partitions:
6: {{1,2},{1,3},{2,3}}
7: {{1,2},{1,3},{2,3,3}}
   {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3},{2,2,3,3}}
   {{1,2},{1,3},{2,3,3,3}}
   {{1,2},{1,3},{2,3,4,4}}
   {{1,2},{1,3,3},{2,3,3}}
   {{1,2},{1,3,4},{2,3,4}}
   {{1,3},{1,4},{2,3,4,4}}
   {{1,3},{1,1,2},{2,3,3}}
   {{1,3},{1,2,2},{2,3,3}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,3},{1,2,4},{3,4,4}}
   {{2,4},{1,2,3},{3,4,4}}
   {{2,4},{1,2,5},{3,4,5}}
   {{1,2},{1,3},{2,3},{2,3}}
		

Crossrefs

A319779 Number of intersecting multiset partitions of weight n whose dual is not an intersecting multiset partition.

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 20, 66, 226, 696, 2156
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(6) = 20 multiset partitions:
4: {{1,3},{2,3}}
5: {{1,2},{2,3,3}}
   {{1,3},{2,3,3}}
   {{1,4},{2,3,4}}
   {{3},{1,3},{2,3}}
6: {{1,2},{2,3,3,3}}
   {{1,3},{2,2,3,3}}
   {{1,3},{2,3,3,3}}
   {{1,3},{2,3,4,4}}
   {{1,4},{2,3,4,4}}
   {{1,5},{2,3,4,5}}
   {{1,1,2},{2,3,3}}
   {{1,2,2},{2,3,3}}
   {{1,2,3},{3,4,4}}
   {{1,2,4},{3,4,4}}
   {{1,2,5},{3,4,5}}
   {{1,3,3},{2,3,3}}
   {{1,3,4},{2,3,4}}
   {{2},{1,2},{2,3,3}}
   {{3},{1,3},{2,3,3}}
   {{4},{1,4},{2,3,4}}
   {{1,3},{2,3},{2,3}}
   {{1,3},{2,3},{3,3}}
   {{1,4},{2,4},{3,4}}
   {{3},{3},{1,3},{2,3}}
		

Crossrefs

A319781 Number of multiset partitions of integer partitions of n with empty intersection. Number of relatively prime factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 0, 0, 1, 3, 9, 21, 48, 103, 214, 436, 863, 1689
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3) = 1 through a(5) = 9 multiset partitions:
3: {{1},{2}}
4: {{1},{3}}
   {{2},{1,1}}
   {{1},{1},{2}}
5: {{1},{4}}
   {{2},{3}}
   {{3},{1,1}}
   {{1},{2,2}}
   {{1},{1},{3}}
   {{1},{2},{2}}
   {{2},{1,1,1}}
   {{1},{2},{1,1}}
   {{1},{1},{1},{2}}
		

Crossrefs

Showing 1-10 of 37 results. Next