A016031 De Bruijn's sequence: 2^(2^(n-1) - n): number of ways of arranging 2^n bits in circle so all 2^n consecutive strings of length n are distinct.
1, 1, 2, 16, 2048, 67108864, 144115188075855872, 1329227995784915872903807060280344576, 226156424291633194186662080095093570025917938800079226639565593765455331328
Offset: 1
References
- Jonathan L. Gross and Jay Yellen, eds., Handbook of Graph Theory, CRC Press, 2004, p. 255.
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973, p. 31.
- D. J. Newman, "A variation of the Game of Twenty Question", in: Murray S. Klamkin (ed.), Problems in Applied Mathematics, Philadelphia, PA: SIAM, 1990, Problem 66-20, pp. 121-122.
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.6.15.
- Ian Stewart, Game, Set and Math, pp. 50, Penguin 1991.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..12
- CombOS - Combinatorial Object Server, Generate de Bruijn sequences.
- Robert Erra, Nik Lygeros and Nigel Stewart, On Minimal Strings Containing the Elements of S(n) by Decimation, Proceedings AA (DM-CCG), 2001, Section 5.4.
- Loïc Foissy, Hopf algebraic structures on hypergraphs and multi-complexes, arXiv:2304.00810 [math.CO], 2023.
- Francisco J. Muñoz and Juan Carlos Nuño, Rule-based Generation of de Bruijn Sequences: Memory and Learning, arXiv:2507.09764 [cs.FL], 2025. See p. 9.
- Wikipedia, De Bruijn sequence.
Crossrefs
Programs
-
Magma
[2^(2^(n-1)-n): n in [1..10]]; // Vincenzo Librandi, Aug 09 2017
-
Mathematica
Table[2^(2^(n - 1) - n), {n, 20}] (* Vincenzo Librandi, Aug 09 2017 *)
Formula
a(n) = 2^A000295(n-1). - Lekraj Beedassy, Jan 17 2007
Shifting once to the left gives the binomial transform of A323816. - Gus Wiseman, Feb 01 2019
Comments