cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A302545 Number of non-isomorphic multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 12, 23, 84, 204, 682, 1977, 6546, 21003, 72038, 248055, 888771, 3240578, 12152775, 46527471, 182339441, 729405164, 2979121279, 12407308136, 52670355242, 227725915268, 1002285274515, 4487915293698, 20434064295155, 94559526596293, 444527730210294, 2122005930659752
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. A singleton is a multiset of size 1. The weight of a multiset partition is the sum of sizes of its elements. Weight is generally not the same as number of vertices.
Also non-isomorphic multiset partitions of weight n with no endpoints, where an endpoint is a vertex appearing only once (degree 1). For example, non-isomorphic representations of the a(4) = 12 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}

Examples

			The a(4) = 12 multiset partitions:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1,1},{1,1}}
  {{1,1},{2,2}}
  {{1,2},{1,2}}
  {{1,2},{2,2}}
  {{1,2},{3,3}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
		

Crossrefs

The set-system version is A330054 (no endpoints) or A306005 (no singletons).
Non-isomorphic multiset partitions are A007716.
Set-systems with no singletons are A016031.

Programs

  • PARI
    \\ compare with similar program for A007716.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 15 2023

Extensions

Extended by Gus Wiseman, Dec 09 2019
Terms a(11) and beyond from Andrew Howroyd, Jan 15 2023

A320663 Number of non-isomorphic multiset partitions of weight n using singletons or pairs.

Original entry on oeis.org

1, 1, 4, 7, 21, 40, 106, 216, 534, 1139, 2715, 5962, 14012, 31420, 73484, 167617, 392714, 908600, 2140429, 5015655, 11905145, 28228533, 67590229, 162067916, 391695348, 949359190, 2316618809, 5673557284, 13979155798, 34583650498, 86034613145, 214948212879
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
  {{1}}  {{1,1}}    {{1},{1,1}}    {{1,1},{1,1}}
         {{1,2}}    {{1},{2,2}}    {{1,1},{2,2}}
         {{1},{1}}  {{1},{2,3}}    {{1,2},{1,2}}
         {{1},{2}}  {{2},{1,2}}    {{1,2},{2,2}}
                    {{1},{1},{1}}  {{1,2},{3,3}}
                    {{1},{2},{2}}  {{1,2},{3,4}}
                    {{1},{2},{3}}  {{1,3},{2,3}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{2,2}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    gs(v) = {sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(2*v[i]*v[j]/g))) + sum(i=1, #v, my(r=v[i]); (1 + (1+r)%2)*x^r + ((1+r)\2)*x^(2*r))}
    a(n)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(gs(p) + O(x*x^n), -n))[n]); s/n!} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 26 2018

A029862 Expansion of q^(5/24) / (eta(q) * eta(q^2)^2) in powers of q.

Original entry on oeis.org

1, 1, 4, 5, 14, 18, 41, 54, 109, 145, 267, 357, 618, 826, 1359, 1815, 2872, 3824, 5859, 7774, 11600, 15329, 22362, 29425, 42113, 55167, 77648, 101267, 140479, 182395, 249789, 322906, 437199, 562755, 754171, 966713, 1283630, 1638716, 2157763
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018
Also the number of non-isomorphic multiset partitions of weight n using singletons or pairs where no vertex appears more than twice. - Gus Wiseman, Oct 18 2018 (Proved by Andrew Howroyd, Oct 26 2018)

Examples

			G.f. = 1 + x + 4*x^2 + 5*x^3 + 14*x^4 + 18*x^5 + 41*x^6 + 54*x^7 + 109*x^8 + ...
G.f. = q^-5 + q^19 + 4*q^43 + 5*q^67 + 14*q^91 + 18*q^115 + 41*q^139 + ...
From _Gus Wiseman_, Oct 27 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions using singletons or pairs where no vertex appears more than twice:
  {{1}}  {{1,1}}    {{1},{2,2}}    {{1,1},{2,2}}      {{1},{2,2},{3,3}}
         {{1,2}}    {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3},{2,3}}
         {{1},{1}}  {{2},{1,2}}    {{1,2},{3,3}}      {{1},{2,3},{4,4}}
         {{1},{2}}  {{1},{2},{2}}  {{1,2},{3,4}}      {{1},{2,3},{4,5}}
                    {{1},{2},{3}}  {{1,3},{2,3}}      {{1},{2,4},{3,4}}
                                   {{1},{1},{2,2}}    {{2},{1,2},{3,3}}
                                   {{1},{1},{2,3}}    {{2},{1,3},{2,3}}
                                   {{1},{2},{1,2}}    {{4},{1,2},{3,4}}
                                   {{1},{2},{3,3}}    {{1},{1},{3},{2,3}}
                                   {{1},{2},{3,4}}    {{1},{2},{2},{3,3}}
                                   {{1},{3},{2,3}}    {{1},{2},{2},{3,4}}
                                   {{1},{1},{2},{2}}  {{1},{2},{3},{2,3}}
                                   {{1},{2},{3},{3}}  {{1},{2},{3},{4,4}}
                                   {{1},{2},{3},{4}}  {{1},{2},{3},{4,5}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{2},{3},{3}}
                                                      {{1},{2},{3},{4},{4}}
                                                      {{1},{2},{3},{4},{5}}
(End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    QP = QPochhammer; s = 1/(QP[q]*QP[q^2]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A) * eta(x^2 + A)^2), n))};

Formula

Euler transform of period 2 sequence [ 1, 3, ...].
G.f.: Product_{k>0} 1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))). - Michael Somos, Mar 23 2003
a(n) ~ exp(2*Pi*sqrt(n/3))/(6*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Sep 07 2015

A330055 Number of non-isomorphic set-systems of weight n with no singletons or endpoints.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 3, 5, 16, 24, 90, 179, 567, 1475, 4623, 13650, 44475, 144110, 492017, 1706956, 6124330, 22442687, 84406276, 324298231, 1273955153, 5106977701, 20885538133, 87046940269, 369534837538, 1596793560371, 7019424870960, 31374394197536, 142514998263015
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(7) = 1 through a(10) = 16 set-systems:
  {12}{13}{123}  {12}{134}{234}    {12}{134}{1234}    {12}{1345}{2345}
                 {12}{34}{1234}    {123}{124}{134}    {123}{124}{1234}
                 {12}{13}{24}{34}  {12}{13}{14}{234}  {123}{145}{2345}
                                   {12}{13}{23}{123}  {12}{345}{12345}
                                   {12}{13}{24}{134}  {12}{13}{124}{134}
                                                      {12}{13}{124}{234}
                                                      {12}{13}{14}{1234}
                                                      {12}{13}{24}{1234}
                                                      {12}{13}{245}{345}
                                                      {12}{13}{45}{2345}
                                                      {12}{34}{123}{124}
                                                      {12}{34}{125}{345}
                                                      {12}{34}{135}{245}
                                                      {13}{24}{123}{124}
                                                      {12}{13}{14}{23}{24}
                                                      {12}{13}{24}{35}{45}
		

Crossrefs

The labeled version is A330056.
The "multi" version is A320665.
Non-isomorphic set-systems with no singletons are A306005.
Non-isomorphic set-systems with no endpoints are A330054.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g-subst(g,x,x^2)}
    S(q, t, k)={(x-x^2)*sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q, t, n\t)-S(q,t,n\t),x,x^t)/t )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A321760 Number of non-isomorphic multiset partitions of weight n with no constant parts or vertices that appear in only one part.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 7, 9, 37, 79, 273, 755, 2648, 8432, 29872, 104624, 384759, 1432655, 5502563, 21533141, 86291313, 352654980, 1471073073, 6253397866, 27083003687, 119399628021, 535591458635, 2443030798539, 11326169401988, 53343974825122, 255121588496338
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n in which every row and column has at least two nonzero entries.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(7) = 9 multiset partitions:
  {{1,2},{1,2}}  {{1,2},{1,2,2}}  {{1,1,2},{1,2,2}}    {{1,1,2},{1,2,2,2}}
                                  {{1,2},{1,1,2,2}}    {{1,2},{1,1,2,2,2}}
                                  {{1,2},{1,2,2,2}}    {{1,2},{1,2,2,2,2}}
                                  {{1,2,2},{1,2,2}}    {{1,2,2},{1,1,2,2}}
                                  {{1,2,3},{1,2,3}}    {{1,2,2},{1,2,2,2}}
                                  {{1,2},{1,2},{1,2}}  {{1,2,3},{1,2,3,3}}
                                  {{1,2},{1,3},{2,3}}  {{1,2},{1,2},{1,2,2}}
                                                       {{1,2},{1,3},{2,3,3}}
                                                       {{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A330052 Number of non-isomorphic set-systems of weight n with at least one endpoint.

Original entry on oeis.org

0, 1, 2, 4, 8, 18, 40, 94, 228, 579, 1508, 4092, 11478, 33337, 100016, 309916, 990008, 3257196, 11021851, 38314009, 136657181, 499570867, 1869792499, 7158070137, 28003286261, 111857491266, 455852284867, 1893959499405, 8017007560487, 34552315237016, 151534813272661
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions:
  {1}  {12}    {123}      {1234}        {12345}
       {1}{2}  {1}{12}    {1}{123}      {1}{1234}
               {1}{23}    {12}{13}      {12}{123}
               {1}{2}{3}  {1}{234}      {12}{134}
                          {12}{34}      {1}{2345}
                          {1}{2}{13}    {12}{345}
                          {1}{2}{34}    {1}{12}{13}
                          {1}{2}{3}{4}  {1}{12}{23}
                                        {1}{12}{34}
                                        {1}{2}{123}
                                        {1}{2}{134}
                                        {1}{2}{345}
                                        {1}{23}{45}
                                        {2}{13}{14}
                                        {1}{2}{3}{12}
                                        {1}{2}{3}{14}
                                        {1}{2}{3}{45}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

The complement is counted by A330054.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one singleton are A330053.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    brute[{}]:={};brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]],UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]

Formula

a(n) = A283877(n) - A330054(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A330054 Number of non-isomorphic set-systems of weight n with no endpoints.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 4, 4, 16, 26, 87, 181, 570, 1453, 4464, 13038, 41548, 132217, 442603, 1506803, 5305174, 19092816, 70548770, 266495254, 1029835424, 4063610148, 16366919221, 67217627966, 281326631801, 1199048810660, 5201341196693, 22950740113039, 102957953031700
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(8) = 16 multiset partitions (empty columns not shown):
  0  {1}{2}{12}  {12}{13}{23}    {13}{23}{123}      {12}{134}{234}
                 {1}{23}{123}    {1}{3}{23}{123}    {1}{234}{1234}
                 {1}{2}{13}{23}  {3}{12}{13}{23}    {12}{34}{1234}
                 {1}{2}{3}{123}  {1}{2}{3}{13}{23}  {1}{12}{34}{234}
                                                    {12}{13}{24}{34}
                                                    {1}{2}{134}{234}
                                                    {1}{2}{34}{1234}
                                                    {2}{13}{14}{234}
                                                    {2}{13}{23}{123}
                                                    {3}{13}{23}{123}
                                                    {1}{2}{13}{24}{34}
                                                    {1}{2}{3}{14}{234}
                                                    {1}{2}{3}{23}{123}
                                                    {1}{2}{3}{4}{1234}
                                                    {2}{3}{12}{13}{23}
                                                    {1}{2}{3}{4}{12}{34}
		

Crossrefs

The complement is counted by A330052.
The multiset partition version is A302545.
Non-isomorphic set-systems with no singletons are A306005.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={my(g=1+x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g - subst(g,x,x^2)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q,t,n\t)/t,x,x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A330056 Number of set-systems with n vertices and no singletons or endpoints.

Original entry on oeis.org

1, 1, 1, 6, 1724, 66963208, 144115175600855641, 1329227995784915809349010517957163445, 226156424291633194186662080095093568675422295082604716043360995547325655259
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(3) = 6 set-systems:
  {}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The version for non-isomorphic set-systems is A330055 (by weight).
The covering case is A330057.
Set-systems with no singletons are A016031.
Set-systems with no endpoints are A330059.
Non-isomorphic set-systems with no singletons are A306005 (by weight).
Non-isomorphic set-systems with no endpoints are A330054, (by weight).
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    \\ Here AS2(n,k) is A008299 (associated Stirling of 2nd kind)
    AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))} \\ Andrew Howroyd, Jan 16 2023

Formula

Binomial transform of A330057.
a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} Sum_{i=0..k-2*j} (-1)^k * binomial(n,k) * 2^(2^(n-k)-(n-k)-1) * binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) where AS2(n,k) are the associated Stirling numbers of the 2nd kind (A008299). - Andrew Howroyd, Jan 16 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023

A330053 Number of non-isomorphic set-systems of weight n with at least one singleton.

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 32, 79, 193, 499, 1321, 3626, 10275, 30126, 91062, 284093, 912866, 3018825, 10261530, 35814255, 128197595, 470146011, 1764737593, 6773539331, 26561971320, 106330997834, 434195908353, 1807306022645, 7663255717310, 33079998762373
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers. An singleton is an edge of size 1. The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
  {1}  {1}{2}  {1}{12}    {1}{123}      {1}{1234}
               {1}{23}    {1}{234}      {1}{2345}
               {1}{2}{3}  {1}{2}{12}    {1}{12}{13}
                          {1}{2}{13}    {1}{12}{23}
                          {1}{2}{34}    {1}{12}{34}
                          {1}{2}{3}{4}  {1}{2}{123}
                                        {1}{2}{134}
                                        {1}{2}{345}
                                        {1}{23}{45}
                                        {2}{13}{14}
                                        {1}{2}{3}{12}
                                        {1}{2}{3}{14}
                                        {1}{2}{3}{45}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

The complement is counted by A306005.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one endpoint are A330052.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A283877 = A@283877;
    A306005 = A@306005;
    a[n_] := A283877[[n + 1]] - A306005[[n + 1]];
    a /@ Range[0, 50] (* Jean-François Alcover, Feb 09 2020 *)

Formula

a(n) = A283877(n) - A306005(n). - Jean-François Alcover, Feb 09 2020

A330059 Number of set-systems with n vertices and no endpoints.

Original entry on oeis.org

1, 1, 2, 63, 29471, 2144945976, 9223371624669871587, 170141183460469227599616678821978424151, 57896044618658097711785492504343953752410420469299789800819363538011879603532
Offset: 0

Views

Author

Gus Wiseman, Dec 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. An endpoint is a vertex appearing only once (degree 1).

Examples

			The a(2) = 2 set-systems are {} and {{1},{2},{1,2}}. The a(3) = 63 set-systems are:
  0                 {2}{3}{12}{13}       {1}{3}{12}{13}{23}
  {1}{2}{12}        {2}{12}{13}{23}      {2}{3}{12}{13}{23}
  {1}{3}{13}        {2}{3}{12}{123}      {1}{2}{12}{23}{123}
  {2}{3}{23}        {2}{3}{13}{123}      {1}{2}{13}{23}{123}
  {12}{13}{23}      {3}{12}{13}{23}      {1}{3}{12}{13}{123}
  {1}{23}{123}      {1}{13}{23}{123}     {1}{3}{12}{23}{123}
  {2}{13}{123}      {2}{12}{13}{123}     {1}{3}{13}{23}{123}
  {3}{12}{123}      {2}{12}{23}{123}     {2}{3}{12}{13}{123}
  {12}{13}{123}     {2}{13}{23}{123}     {2}{3}{12}{23}{123}
  {12}{23}{123}     {3}{12}{13}{123}     {2}{3}{13}{23}{123}
  {13}{23}{123}     {3}{12}{23}{123}     {1}{12}{13}{23}{123}
  {1}{2}{13}{23}    {3}{13}{23}{123}     {2}{12}{13}{23}{123}
  {1}{2}{3}{123}    {12}{13}{23}{123}    {3}{12}{13}{23}{123}
  {1}{3}{12}{23}    {1}{2}{3}{12}{13}    {1}{2}{3}{12}{13}{23}
  {1}{12}{13}{23}   {1}{2}{3}{12}{23}    {1}{2}{3}{12}{13}{123}
  {1}{2}{13}{123}   {1}{2}{3}{13}{23}    {1}{2}{3}{12}{23}{123}
  {1}{2}{23}{123}   {1}{2}{12}{13}{23}   {1}{2}{3}{13}{23}{123}
  {1}{3}{12}{123}   {1}{2}{3}{12}{123}   {1}{2}{12}{13}{23}{123}
  {1}{3}{23}{123}   {1}{2}{3}{13}{123}   {1}{3}{12}{13}{23}{123}
  {1}{12}{13}{123}  {1}{2}{3}{23}{123}   {2}{3}{12}{13}{23}{123}
  {1}{12}{23}{123}  {1}{2}{12}{13}{123}  {1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

The case with no singletons is A330056.
The unlabeled version is A330054 (by weight) or A330124 (by vertices).
Set-systems with no singletons are A016031.
Non-isomorphic set-systems with no singletons are A306005 (by weight).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
  • PARI
    a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-1)*sum(j=0, k, stirling(k,j,2)*2^(j*(n-k)) ))} \\ Andrew Howroyd, Jan 16 2023

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^k * binomial(n,k) * 2^(2^(n-k)-1) * Stirling2(k,j) * 2^(j*(n-k)). - Andrew Howroyd, Jan 16 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023
Showing 1-10 of 15 results. Next