cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A052847 G.f.: 1 / Product_{k>=1} (1-x^k)^(k-1).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 12, 18, 33, 52, 88, 138, 229, 354, 568, 880, 1378, 2110, 3260, 4942, 7527, 11320, 17031, 25394, 37842, 55956, 82630, 121300, 177677, 258980, 376626, 545352, 787784, 1133764, 1627657, 2329020, 3324559, 4731396, 6717774, 9512060
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler transform of sequence [0,1,2,3,...]. - Michael Somos, Jul 02 2004
Number of partitions of n objects of 2 colors, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Jan 23 2006
Number of partitions of n without 1s, one kind of 2s, two kinds of 3s, etc. - Joerg Arndt, Jul 31 2011
From Vaclav Kotesovec, Oct 17 2015: (Start)
In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.
(End)

Examples

			1 + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 12*x^6 + 18*x^7 + 33*x^8 + 52*x^9 + ...
From _Gus Wiseman_, Jan 22 2019: (Start)
The partitions described in Franklin T. Adams-Watters's comment are (n = 2 through 6):
  {{12}}  {{112}}  {{1112}}    {{11112}}    {{111112}}
          {{122}}  {{1122}}    {{11122}}    {{111122}}
                   {{1222}}    {{11222}}    {{111222}}
                   {{12}{12}}  {{12222}}    {{112222}}
                               {{12}{112}}  {{122222}}
                               {{12}{122}}  {{112}{112}}
                                            {{112}{122}}
                                            {{12}{1112}}
                                            {{12}{1122}}
                                            {{12}{1222}}
                                            {{122}{122}}
                                            {{12}{12}{12}}
(End)
		

Crossrefs

Cf. A000219 (v=0), A052847 (v=1), A263358 (v=2), A263359 (v=3), A263360 (v=4), A263361 (v=5), A263362 (v=6), A263363 (v=7), A263364 (v=8).

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= Set(C)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> n-1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 04 2015 after Alois P. Heinz
  • Mathematica
    Clear[a]; a[n_]:= a[n] = 1/n*Sum[(DivisorSigma[2,k]-DivisorSigma[1,k])*a[n-k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,100}] (* Vaclav Kotesovec, Mar 04 2015 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^(k+1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x*O(x^n))^(k-1)), n))}

Formula

a(n) = 1/n*Sum_{k=1..n} (sigma[2](k)-sigma[1](k))*a(n-k).
G.f.: exp( Sum_{k>0} ( x^k / (1 - x^k) )^2 / k ).
G.f.: exp( sum(n>=0, (sigma[2](n)-sigma[1](n)) *x^n/n ) ). - Joerg Arndt, Jul 31 2011
a(n) ~ 2^(1/36) * Zeta(3)^(1/36) * exp(1/12 - Pi^4/(432*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 3^(1/2) * n^(19/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 07 2015

Extensions

Edited by Vladeta Jovovic, Sep 10 2002

A320665 Number of non-isomorphic multiset partitions of weight n with no singletons or vertices that appear only once.

Original entry on oeis.org

1, 0, 1, 1, 5, 6, 27, 47, 169, 406, 1327, 3790, 12560, 39919, 136821, 470589, 1687981, 6162696, 23173374, 88981796, 349969596, 1405386733, 5764142220, 24111709328, 102825231702, 446665313598, 1975339030948, 8888051121242, 40667889052853, 189126710033882, 893526261542899
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. This sequence counts non-isomorphic multiset partitions with no singletons whose dual also has no singletons.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 27 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}    {{1,1,1,1,1,1}}
                      {{1,1,2,2}}    {{1,1,2,2,2}}    {{1,1,1,2,2,2}}
                      {{1,1},{1,1}}  {{1,1},{1,1,1}}  {{1,1,2,2,2,2}}
                      {{1,1},{2,2}}  {{1,1},{1,2,2}}  {{1,1,2,2,3,3}}
                      {{1,2},{1,2}}  {{1,1},{2,2,2}}  {{1,1},{1,1,1,1}}
                                     {{1,2},{1,2,2}}  {{1,1,1},{1,1,1}}
                                                      {{1,1},{1,2,2,2}}
                                                      {{1,1,1},{2,2,2}}
                                                      {{1,1,2},{1,2,2}}
                                                      {{1,1},{2,2,2,2}}
                                                      {{1,1,2},{2,2,2}}
                                                      {{1,1},{2,2,3,3}}
                                                      {{1,1,2},{2,3,3}}
                                                      {{1,2},{1,1,2,2}}
                                                      {{1,2},{1,2,2,2}}
                                                      {{1,2},{1,2,3,3}}
                                                      {{1,2,2},{1,2,2}}
                                                      {{1,2,3},{1,2,3}}
                                                      {{2,2},{1,1,2,2}}
                                                      {{1,1},{1,1},{1,1}}
                                                      {{1,1},{1,2},{2,2}}
                                                      {{1,1},{2,2},{2,2}}
                                                      {{1,1},{2,2},{3,3}}
                                                      {{1,1},{2,3},{2,3}}
                                                      {{1,2},{1,2},{1,2}}
                                                      {{1,2},{1,2},{2,2}}
                                                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A-x*sv(1)), sExp(A-x*sv(1))))} \\ Andrew Howroyd, Jan 17 2023
    
  • PARI
    Vec(G(20,1)) \\ G defined in A369287. - Andrew Howroyd, Jan 28 2024

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023

A322452 Number of factorizations of n into factors > 1 not including any prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n with no constant parts.

Examples

			The a(840) = 11 factorizations are (6*10*14), (6*140), (10*84), (12*70), (14*60), (15*56), (20*42), (21*40), (24*35), (28*30), (840).
		

Crossrefs

Positions of 0's are the prime powers A000961.

Programs

  • Mathematica
    acfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[acfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],!PrimePowerQ[#]&]}]];
    Table[Length[acfacs[n]],{n,100}]
  • PARI
    A322452(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(1A322452(n/d, d))); (s)); \\ Antti Karttunen, Jan 03 2019
    
  • PARI
    first(n) = my(res=vector(n)); for(i=1, n, f=factor(i); v=vecsort(f[,2] , , 4); f[, 2] = v; fb = factorback(f); if(fb==i, res[i] = A322452(i), res[i] = res[fb])); res \\ A322452 the function above \\ David A. Corneth, Jan 03 2019

Extensions

More terms from Antti Karttunen, Jan 03 2019

A321407 Number of non-isomorphic multiset partitions of weight n with no constant parts.

Original entry on oeis.org

1, 0, 1, 2, 7, 13, 47, 111, 367, 1057, 3474, 11116, 38106, 131235, 470882, 1720959, 6472129, 24860957, 97779665, 392642763, 1610045000, 6732768139, 28699327441, 124600601174, 550684155992, 2476019025827, 11320106871951, 52598300581495, 248265707440448, 1189855827112636, 5787965846277749
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which every row has at least two nonzero entries.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions:
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,4,4}}
                      {{1,2},{3,4}}  {{1,2,3,4,5}}
                      {{1,3},{2,3}}  {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    S(q, t, k)={sum(j=1, #q, if(t%q[j]==0, q[j]))*vector(k,i,1)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(x*Ser(K(q, t, n\t)-S(q, t, n\t))/t, x, x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023

A322441 Number of pairs of set partitions of {1,...,n} where no block of one is a subset or equal to any block of the other.

Original entry on oeis.org

1, 0, 0, 0, 6, 60, 630, 9660, 192906
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

For any pair (X,Y) meeting the requirement, so does the pair (Y,X) which must be distinct from (X,Y), except for X = Y = {} when n = 0. Therefore all a(n) are even for n > 0. - M. F. Hasler, Dec 30 2020

Examples

			The a(4) = 6 pairs of set partitions:
  {{1,2},{3,4}} and {{1,3},{2,4}},
  {{1,2},{3,4}} and {{1,4},{2,3}},
  {{1,3},{2,4}} and {{1,2},{3,4}},
  {{1,3},{2,4}} and {{1,4},{2,3}},
  {{1,4},{2,3}} and {{1,2},{3,4}},
  {{1,4},{2,3}} and {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stabQ[u_]:=stabQ[u,SubsetQ];stabQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[UnsameQ@@Join@@#,stabQ[Join@@#]]&]],{n,6}]

A320798 Number of non-isomorphic weight-n connected antichains of non-constant multisets with multiset density -1.

Original entry on oeis.org

0, 1, 2, 5, 9, 24, 51, 134, 328, 868
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 24 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}
          {{123}}  {{1222}}    {{12222}}    {{112222}}
                   {{1233}}    {{12233}}    {{112233}}
                   {{1234}}    {{12333}}    {{122222}}
                   {{13}{23}}  {{12344}}    {{122333}}
                               {{12345}}    {{123333}}
                               {{12}{233}}  {{123344}}
                               {{13}{233}}  {{123444}}
                               {{14}{234}}  {{123455}}
                                            {{123456}}
                                            {{112}{233}}
                                            {{122}{233}}
                                            {{12}{2333}}
                                            {{123}{344}}
                                            {{124}{344}}
                                            {{125}{345}}
                                            {{13}{2233}}
                                            {{13}{2333}}
                                            {{13}{2344}}
                                            {{133}{233}}
                                            {{14}{2344}}
                                            {{15}{2345}}
                                            {{13}{24}{34}}
                                            {{14}{24}{34}}
		

Crossrefs

A322454 Number of multiset partitions with no constant parts of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 4, 0, 4, 0, 3, 3, 1, 0, 7, 4, 1, 9, 4, 0, 7, 0, 11, 3, 1, 5, 15, 0, 1, 4, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(30) = 7 multiset partitions:
    {{1,1,1,2,2,3}}
   {{1,2},{1,1,2,3}}
   {{1,3},{1,1,2,2}}
   {{2,3},{1,1,1,2}}
   {{1,1,2},{1,2,3}}
   {{1,1,3},{1,2,2}}
  {{1,2},{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[nrmptn[n]],Min@@Length/@Union/@#>1&]],{n,20}]

A323654 Number of non-isomorphic multiset partitions of weight n with no constant parts and only two distinct vertices.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 50, 69, 125, 177, 301, 440, 717, 1055, 1675, 2471, 3835, 5660, 8627, 12697, 19095, 27978, 41581, 60650, 89244, 129490, 188925, 272676, 394809, 566882, 815191, 1164510, 1664295, 2365698, 3361844, 4756030, 6723280, 9468138, 13319299
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

First differs from A304967 at a(10) = 50, A304967(10) = 49.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of positive integer matrices with only two columns and sum of entries equal to n, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 9 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}      {{1112222}}
                   {{1222}}    {{12222}}    {{112222}}      {{1122222}}
                   {{12}{12}}  {{12}{122}}  {{122222}}      {{1222222}}
                                            {{112}{122}}    {{112}{1222}}
                                            {{12}{1122}}    {{12}{11222}}
                                            {{12}{1222}}    {{12}{12222}}
                                            {{122}{122}}    {{122}{1122}}
                                            {{12}{12}{12}}  {{122}{1222}}
                                                            {{12}{12}{122}}
Inequivalent representatives of the a(8) = 20 matrices:
  [4 4] [3 5] [2 6] [1 7]
.
  [1 1] [1 1] [1 1] [2 1] [2 1] [1 2] [1 2] [3 1] [2 2] [2 2] [1 3]
  [3 3] [2 4] [1 5] [2 3] [1 4] [2 3] [1 4] [1 3] [2 2] [1 3] [1 3]
.
  [1 1] [1 1] [1 1] [1 1]
  [1 1] [1 1] [2 1] [1 2]
  [2 2] [1 3] [1 2] [1 2]
.
  [1 1]
  [1 1]
  [1 1]
  [1 1]
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat(1,(EulerT(vector(n, k, k-1)) + EulerT(vector(n, k, if(k%2, 0, (k+2)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019

Formula

a(2*n) = (A052847(2*n) + A003293(n))/2; a(2*n+1) = A052847(2*n+1)/2. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019

A369286 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no constant parts or vertices that appear in only one part, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 5, 2, 0, 0, 6, 3, 0, 0, 16, 16, 5, 0, 0, 22, 44, 13, 0, 0, 45, 135, 82, 11, 0, 0, 64, 338, 301, 52, 0, 0, 119, 880, 1233, 382, 34, 0, 0, 171, 2024, 4090, 1936, 211, 0, 0, 294, 4674, 13474, 9500, 1843, 87, 0, 0, 433, 10191, 40532, 40817, 11778, 873
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2024

Keywords

Comments

T(n,k) is the number of nonnegative integer matrices with sum of values n, k rows and every row and column having at least two nonzero entries up to permutation of rows and columns.

Examples

			Triangle begins:
  1;
  0;
  0, 0;
  0, 0;
  0, 0,   1;
  0, 0,   1;
  0, 0,   5,    2;
  0, 0,   6,    3;
  0, 0,  16,   16,    5;
  0, 0,  22,   44,   13;
  0, 0,  45,  135,   82,   11;
  0, 0,  64,  338,  301,   52;
  0, 0, 119,  880, 1233,  382,  34;
  0, 0, 171, 2024, 4090, 1936, 211;
  ...
The T(6,2) = 5 multiset partitions are:
  {{1,1,1,2}, {1,2}},
  {{1,1,2,2}, {1,2}},
  {{1,1,2}, {1,1,2}},
  {{1,1,2}, {1,2,2}},
  {{1,2,3}, {1,2,3}}.
The corresponding T(6,2) = 5 matrices are:
  [3 1]  [2 2]  [2 1]  [2 1]  [1 1 1]
  [1 1]  [1 1]  [2 1]  [1 2]  [1 1 1]
The T(6,3) = 2 matrices are:
  [1 1]  [1 1 0]
  [1 1]  [1 0 1]
  [1 1]  [0 1 1]
		

Crossrefs

Row sums are A321760.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); eta(x + O(x*x^k))*(1 + x*Ser(K(q,t,k))) + x*(1-c)/(1-x) - 1}
    G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
    T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
    { my(A=T(15)); for(i=1, #A, print(A[i])) }

Formula

T(2*n,n) = A307316(n).
Showing 1-9 of 9 results.