cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A035528 Euler transform of A027656(n-1).

Original entry on oeis.org

0, 1, 1, 3, 3, 6, 9, 13, 19, 28, 42, 57, 84, 115, 164, 227, 313, 429, 588, 799, 1079, 1461, 1952, 2617, 3480, 4627, 6111, 8072, 10604, 13905, 18181, 23701, 30828, 39990, 51763, 66822, 86124, 110687, 142039, 181841, 232409, 296401, 377419, 479635, 608558, 770818
Offset: 0

Views

Author

Keywords

Comments

Also the weigh transform of A003602. - John Keith, Nov 17 2021

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[-1 + Product[1/(1 - x^(2*k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
    nmax = 100; Flatten[{0, Rest[CoefficientList[Series[E^Sum[1/j*x^j/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Oct 10 2015 *)

Formula

a(n) ~ A^(1/2) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) + Pi^2 * n^(1/3)/(3*2^(8/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(4/3)) / (sqrt(3*Pi) * 2^(71/72) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Oct 02 2015

A069153 a(n) = Sum_{d|n} d*(d-1)/2.

Original entry on oeis.org

0, 1, 3, 7, 10, 19, 21, 35, 39, 56, 55, 91, 78, 113, 118, 155, 136, 208, 171, 252, 234, 287, 253, 395, 310, 404, 390, 497, 406, 614, 465, 651, 586, 698, 626, 910, 666, 875, 822, 1060, 820, 1202, 903, 1239, 1144, 1289, 1081, 1643, 1197, 1581, 1414, 1736
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

Inverse Mobius transform of A000217. - R. J. Mathar, Jan 19 2009

Examples

			x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 19*x^6 + 21*x^7 + 35*x^8 + 39*x^9 + 56*x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq((1/2)*(sigma[2](n) - sigma[1](n)), n = 1..100); # Peter Bala, Jan 21 2021
  • Mathematica
    A069153[n_]:=Plus@@Binomial[Divisors[n],2];Array[A069153,100] (* Enrique Pérez Herrero, Feb 21 2012 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 - d) / 2)}
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 2) - sigma(f)) / 2; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} x^(2*k)/(1-x^k)^3. - Vladeta Jovovic, Dec 17 2002
Row sums of triangle A134840. - Gary W. Adamson, Nov 12 2007
G.f. A(x) = (1/2) * x * d/dx log( B(x) ) where B() is g.f. for A052847. - Michael Somos, Feb 12 2008
G.f.: Sum_{k>0} ((k^2 - k) / 2) * x^k / (1 - x^k). - Michael Somos, Feb 12 2008
From Peter Bala, Jan 21 2021: (Start)
a(n) = (1/2)*(sigma_2(n) - sigma_1(n)) = (1/2)*(A001157(n) A000203(n)) = (1/2)*A086666.
G.f.: A(x) = (1/2)* Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3. - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)

A052812 A simple grammar: power set of pairs of sequences.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 9, 16, 24, 42, 63, 102, 157, 244, 373, 570, 858, 1290, 1930, 2858, 4228, 6208, 9084, 13216, 19175, 27666, 39804, 57020, 81412, 115820, 164264, 232178, 327220, 459796, 644232, 900214, 1254554, 1743896, 2418071, 3344896, 4616026
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of partitions of n objects of two colors into distinct parts, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Dec 28 2006

Crossrefs

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= PowerSet(C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k-1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 07 2015 *)

Formula

G.f.: exp(Sum((-1)^(j[1]+1)*(x^j[1])^2/(x^j[1]-1)^2/j[1], j[1]=1 .. infinity))
G.f.: Product_{k>=1} (1+x^k)^(k-1). - Vladeta Jovovic, Sep 17 2002
Weigh transform of b(n) = n-1. - Franklin T. Adams-Watters, Dec 28 2006
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(1296*Zeta(3)) - Pi^2 * n^(1/3) / (3^(4/3) * 2^(5/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/4) * 3^(1/3) * n^(2/3) * sqrt(Pi)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015

Extensions

More terms from Vladeta Jovovic, Sep 17 2002

A263150 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^k.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 6, 7, 11, 12, 21, 22, 34, 38, 59, 67, 95, 118, 155, 198, 252, 330, 409, 540, 662, 867, 1067, 1382, 1705, 2187, 2705, 3430, 4267, 5348, 6666, 8303, 10352, 12812, 15964, 19681, 24467, 30091, 37282, 45769, 56539, 69296, 85304
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2015

Keywords

Comments

The side effect of this calculation is a formula: Integral_{x=0..infinity} exp(-3*x)/(x*(1-exp(-2*x))^2) - 1/(4*x^3) + 1/(4*x^2) - exp(-x)/(24*x) = log(2)/6 + log(A)/2 - 1/24, where A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d-1, 2)=0, (d-1)/2, 0),
           d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # after Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(2*k+1))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(2*j))^2).
a(n) ~ sqrt(A) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(8/3)* Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)/2) / (2^(35/72) * sqrt(3*Pi) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A304966 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-1), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 0, 1, 2, 5, 8, 18, 30, 61, 107, 203, 358, 663, 1162, 2093, 3666, 6481, 11258, 19652, 33874, 58464, 100046, 171032, 290563, 492745, 831393, 1399655, 2346707, 3924873, 6541472, 10875575, 18025629, 29804125, 49143254, 80841455, 132651457, 217179366, 354745107, 578215807
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Euler transform of A000065.
Convolution of the sequences A001970 and A010815.

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d)-d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 38; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A000065(k).

A054974 Number of nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to n, up to row and column permutation.

Original entry on oeis.org

1, 2, 6, 9, 17, 23, 36, 46, 65, 80, 106, 127, 161, 189, 232, 268, 321, 366, 430, 485, 561, 627, 716, 794, 897, 988, 1106, 1211, 1345, 1465, 1616, 1752, 1921, 2074, 2262, 2433, 2641, 2831, 3060, 3270, 3521, 3752, 4026, 4279, 4577, 4853, 5176, 5476, 5825, 6150
Offset: 2

Views

Author

Vladeta Jovovic, May 28 2000

Keywords

Comments

From Gus Wiseman, Jan 22 2019: (Start)
Also the number of non-isomorphic multiset partitions of weight n with exactly 2 distinct vertices and exactly 2 (not necessarily distinct) edges. For example, non-isomorphic representatives of the a(2) = 1 through a(5) = 9 multiset partitions are:
{{1}{2}} {{1}{22}} {{1}{122}} {{11}{122}}
{{2}{12}} {{11}{22}} {{1}{1222}}
{{12}{12}} {{11}{222}}
{{1}{222}} {{12}{122}}
{{12}{22}} {{1}{2222}}
{{2}{122}} {{12}{222}}
{{2}{1122}}
{{2}{1222}}
{{22}{122}}
(End)

Examples

			There are 9 nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to 5, up to row and column permutation:
[0 1] [0 1] [0 1] [0 1] [0 2] [0 2] [0 2] [0 3] [1 1]
[1 3] [2 2] [3 1] [4 0] [1 2] [2 1] [3 0] [1 1] [1 2].
		

Crossrefs

Programs

  • Maple
    gf := -x^2*(x^3-x^2-1)/((x^2-1)^2*(x-1)^2): s := series(gf, x, 101): for i from 2 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • PARI
    Vec(-x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2) + O(x^60)) \\ Colin Barker, Jan 16 2017

Formula

G.f.: -x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2).
From Colin Barker, Jan 16 2017: (Start)
a(n) = (6 - 6*(-1)^n + (9*(-1)^n-17)*n + 12*n^2 + 2*n^3) / 48.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>7.
(End)

Extensions

More terms from James Sellers, May 29 2000

A255803 G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+2).

Original entry on oeis.org

1, 5, 23, 86, 295, 926, 2748, 7732, 20891, 54401, 137355, 337249, 808043, 1893402, 4348634, 9805669, 21741925, 47463473, 102133056, 216841459, 454648373, 942113618, 1930779697, 3915946921, 7864385266, 15647363323, 30858285440, 60345383394, 117065924679
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(m/36 + c/6 + 1/6) * exp(m/12 - c^2 * Pi^4 / (432*m*Zeta(3)) + c * Pi^2 * n^(1/3) / (3 * 2^(4/3) * (m*Zeta(3))^(1/3)) + 3 * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(2/3)) / (A^m * 2^(c/3 + 1/3 - m/36) * 3^(1/2) * Pi^((c+1)/2) * n^(m/36 + c/6 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 08 2015

Crossrefs

Cf. A000219 (k), A005380 (k+1), A052847 (k-1), A120844 (2k+1), A253289 (2k-1), A255802 (2k+3), A255271 (3k+1).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+2): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((3*sigma[2](k) + 2*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+2),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(7/12) * 3^(1/12) * exp(1/4 - Pi^4/(324*Zeta(3)) + Pi^2 * n^(1/3) / (3^(4/3) * (2*Zeta(3))^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A^3 * 2^(11/12) * Pi^(3/2) * n^(13/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k >= 1} (3*sigma_2(k) + 2*sigma_1(k))*x^k/k) = 1 + 5*x + 23*x^2 + 86*x^3 + 295*x^4 + .... - Peter Bala, Jan 16 2025

A263358 Expansion of Product_{k>=1} 1/(1-x^(k+2))^k.

Original entry on oeis.org

1, 0, 0, 1, 2, 3, 5, 7, 12, 18, 29, 43, 69, 101, 155, 231, 347, 509, 759, 1106, 1626, 2359, 3428, 4938, 7127, 10194, 14587, 20756, 29498, 41716, 58932, 82888, 116413, 162924, 227602, 316988, 440696, 610953, 845469, 1167118, 1608178, 2210888, 3034124, 4155111
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-2), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(k+2))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[E^Sum[x^(3*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(3*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - Pi^4/(108*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(1/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(1/36) * sqrt(Pi) / (A * sqrt(3) * Zeta(3)^(17/36) * n^(1/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263359 Expansion of Product_{k>=1} 1/(1-x^(k+3))^k.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 3, 4, 6, 8, 13, 18, 29, 40, 61, 86, 127, 178, 260, 364, 524, 734, 1042, 1454, 2051, 2848, 3981, 5510, 7652, 10542, 14558, 19970, 27428, 37480, 51222, 69720, 94870, 128634, 174306, 235506, 317899, 428018, 575688, 772540, 1035538, 1385264
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-3), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(k+3))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[E^Sum[x^(4*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(4*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - Pi^4/(48*Zeta(3)) - Pi^2 * n^(1/3) / (2^(4/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(29/36) * Pi / (A * 2^(47/36) * sqrt(3) * Zeta(3)^(47/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263360 Expansion of Product_{k>=1} 1/(1-x^(k+4))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 14, 19, 29, 40, 58, 79, 113, 153, 215, 294, 407, 555, 767, 1040, 1424, 1930, 2624, 3540, 4794, 6441, 8677, 11627, 15589, 20818, 27812, 37011, 49257, 65360, 86681, 114665, 151594, 199947, 263530, 346647, 455553, 597628
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-4), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(k+4))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[E^Sum[x^(5*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(5*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - Pi^4/(27*Zeta(3)) - 2^(2/3) * Pi^2 * n^(1/3) / (3 * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(71/36) * Pi^(3/2) / (12 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(89/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-10 of 29 results. Next