A304967 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-p(k-1)), where p(k) = number of partitions of k (A000041).
1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 49, 68, 123, 173, 295, 432, 707, 1044, 1672, 2483, 3900, 5817, 8993, 13424, 20539, 30609, 46399, 69052, 103879, 154198, 230550, 341261, 507484, 749028, 1108559, 1631340, 2404311, 3527615, 5179317, 7577263, 11086413, 16173577, 23588227
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
- Index entries for sequences related to partitions
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( (numtheory[sigma](j)-1)*b(n-j), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d* b(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, May 22 2018
-
Mathematica
nmax = 42; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - PartitionsP[k - 1]), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - PartitionsP[d - 1]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 42}]
Formula
G.f.: Product_{k>=1} 1/(1 - x^k)^A002865(k).
Comments