A320294
Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n with no 1's.
Original entry on oeis.org
0, 0, 0, 1, 1, 3, 3, 7, 8, 15, 19, 37, 48, 87, 126, 227, 342, 611, 964, 1719, 2806, 4975, 8327, 14782, 25157, 44609, 76972, 136622, 237987, 422881, 742149, 1320825, 2331491, 4156392, 7370868, 13164429, 23433637, 41928557, 74871434, 134203411, 240284935, 431437069
Offset: 1
The a(4) = 1 through a(10) = 15 trees:
(22) (32) (33) (43) (44) (54) (55)
(42) (52) (53) (63) (64)
(222) (322) (62) (72) (73)
(332) (333) (82)
(422) (432) (433)
(2222) (522) (442)
((22)(22)) (3222) (532)
((22)(23)) (622)
(3322)
(4222)
(22222)
((22)(24))
((22)(33))
((23)(23))
((22)(222))
Cf.
A000045,
A000311,
A000669,
A002865,
A141268,
A292504,
A304966,
A304967,
A319312,
A320289,
A320293,
A320295,
A320296.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,10}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=2, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A320295
Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
0, 1, 2, 5, 8, 19, 34, 80, 165, 394, 892, 2192, 5232, 13057, 32271, 81568, 205748, 525735, 1344828, 3467415, 8960849, 23280323, 60639680, 158559047, 415631368, 1092734050, 2879420753, 7605713020, 20130266302, 53386744298, 141836904569, 377479973474, 1006189769886
Offset: 1
The a(2) = 1 through a(6) = 19 trees:
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(211) (221) (51)
(1111) (311) (222)
((11)(11)) (2111) (321)
(11111) (411)
((11)(12)) (2211)
((11)(111)) (3111)
(21111)
(111111)
((11)(13))
((11)(22))
((12)(12))
((11)(112))
((12)(111))
((11)(1111))
((111)(111))
((11)(11)(11))
((11)((11)(11)))
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,IntegerPartitions[n]}],{n,14}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=1/prod(k=1, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A320293
Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n with no 1's.
Original entry on oeis.org
0, 1, 1, 3, 3, 9, 11, 30, 45, 112, 195, 475, 901, 2136, 4349, 10156, 21565, 50003, 109325, 252761, 563785, 1303296, 2948555, 6826494, 15604053, 36210591, 83415487, 194094257, 449813607, 1049555795, 2444027917, 5718195984, 13367881473, 31357008065, 73546933115
Offset: 1
The a(2) = 1 through a(7) = 11 trees:
(2) (3) (4) (5) (6) (7)
(22) (32) (33) (43)
((2)(2)) ((2)(3)) (42) (52)
(222) (322)
((2)(4)) ((2)(5))
((3)(3)) ((3)(4))
((2)(22)) ((2)(23))
((2)(2)(2)) ((3)(22))
((2)((2)(2))) ((2)(2)(3))
((2)((2)(3)))
((3)((2)(2)))
Cf.
A000045,
A000311,
A000669,
A002865,
A141268,
A292504,
A300660,
A304967,
A319312,
A320289,
A320294,
A320295,
A320296.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A318120
Number of set partitions of {1,...,n} with relatively prime block sizes.
Original entry on oeis.org
1, 1, 1, 4, 11, 51, 162, 876, 3761, 20782, 109293, 678569, 4038388, 27644436, 186524145, 1379760895, 10323844183, 82864869803, 674798169662, 5832742205056, 51385856585637, 474708148273586, 4486977535287371, 44152005855084345, 444577220573083896
Offset: 0
The a(4) = 11 set partitions:
{{1},{2},{3},{4}}
{{1},{2},{3,4}}
{{1},{2,3},{4}}
{{1},{2,4},{3}}
{{1,2},{3},{4}}
{{1,3},{2},{4}}
{{1,4},{2},{3}}
{{1},{2,3,4}}
{{1,2,3},{4}}
{{1,2,4},{3}}
{{1,3,4},{2}}
Cf.
A000110,
A000258,
A000311,
A000670,
A000740,
A000837,
A005651,
A005804,
A008277,
A124794,
A319182,
A320289.
-
b:= proc(n, t) option remember; `if`(n=0, `if`(t<2, 1, 0),
add(b(n-j, igcd(t, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 30 2019
-
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
Table[Total[numSetPtnsOfType/@Select[IntegerPartitions[n],GCD@@#==1&]],{n,10}]
(* Second program: *)
b[n_, t_] := b[n, t] = If[n == 0, If[t < 2, 1, 0],
Sum[b[n - j, GCD[t, j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
a[n_] := b[n, 0];
a /@ Range[0, 25] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments