cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A320289 Number of phylogenetic trees with n labels and no singleton leaves.

Original entry on oeis.org

0, 1, 1, 4, 11, 86, 477, 4810, 40679, 496522, 5662933, 81759910, 1169640551, 19622623190, 336215135973, 6455705990674, 128445712218263, 2785761076726066, 62980942321570981, 1525318051255683598, 38566041706375722071, 1032726237783455193662
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Examples

			The a(2) = 1 through a(5) = 11 phylogenetic trees:
  (12)  (123)  (1234)      (12345)
               ((12)(34))  ((12)(345))
               ((13)(24))  ((13)(245))
               ((14)(23))  ((14)(235))
                           ((15)(234))
                           ((23)(145))
                           ((24)(135))
                           ((25)(134))
                           ((34)(125))
                           ((35)(124))
                           ((45)(123))
		

Crossrefs

Programs

  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    rotf[n_]:=rotf[n]=If[n==1,0,1+Sum[numSetPtnsOfType[p]*Times@@rotf/@p,{p,Select[IntegerPartitions[n],Length[#]>1&]}]];
    Array[rotf,20]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(v=vector(n)); for(n=2, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v}
    seq(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018

A320294 Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n with no 1's.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 7, 8, 15, 19, 37, 48, 87, 126, 227, 342, 611, 964, 1719, 2806, 4975, 8327, 14782, 25157, 44609, 76972, 136622, 237987, 422881, 742149, 1320825, 2331491, 4156392, 7370868, 13164429, 23433637, 41928557, 74871434, 134203411, 240284935, 431437069
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Comments

Also phylogenetic trees with no singleton leaves on integer partitions of n with no 1's.

Examples

			The a(4) = 1 through a(10) = 15 trees:
  (22)  (32)  (33)   (43)   (44)        (54)        (55)
              (42)   (52)   (53)        (63)        (64)
              (222)  (322)  (62)        (72)        (73)
                            (332)       (333)       (82)
                            (422)       (432)       (433)
                            (2222)      (522)       (442)
                            ((22)(22))  (3222)      (532)
                                        ((22)(23))  (622)
                                                    (3322)
                                                    (4222)
                                                    (22222)
                                                    ((22)(24))
                                                    ((22)(33))
                                                    ((23)(23))
                                                    ((22)(222))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=2, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 25 2018

A320296 Number of series-reduced rooted trees whose leaves form an integer partition of n with no 1's.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 6, 15, 22, 51, 86, 195, 354, 781, 1512, 3286, 6602, 14269, 29424, 63494, 133298, 287909, 612188, 1325375, 2844448, 6176145, 13348858, 29074164, 63187176, 138044144, 301350424, 660265471, 1446678326, 3178246273, 6985464590, 15384556290
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Comments

Also phylogenetic trees with n unlabeled objects and no singleton leaves.

Examples

			The a(2) = 1 through a(9) = 22 trees:
2   3   4     5     6        7        8           9
        (22)  (23)  (24)     (25)     (26)        (27)
                    (33)     (34)     (35)        (36)
                    (222)    (223)    (44)        (45)
                    (2(22))  ((22)3)  (224)       (225)
                             (2(23))  (233)       (234)
                                      (2222)      (333)
                                      ((22)4)     (2223)
                                      (2(24))     ((22)5)
                                      ((23)3)     (2(25))
                                      (2(33))     ((23)4)
                                      (2(222))    (2(34))
                                      (22(22))    ((24)3)
                                      ((22)(22))  ((33)3)
                                      (2(2(22)))  (2(22)3)
                                                  (2(223))
                                                  (22(23))
                                                  (3(222))
                                                  ((2(22))3)
                                                  ((22)(23))
                                                  (2((22)3))
                                                  (2(2(23)))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    t[n_]:=t[n]=If[PrimeQ[n],{n},Join@@Table[Union[Sort/@Tuples[t/@fac]],{fac,Select[facs[n],Length[#]>1&]}]];
    Table[Sum[Length[t[Times@@Prime/@ptn]],{ptn,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,15}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); for(n=2, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Oct 25 2018

A323654 Number of non-isomorphic multiset partitions of weight n with no constant parts and only two distinct vertices.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 50, 69, 125, 177, 301, 440, 717, 1055, 1675, 2471, 3835, 5660, 8627, 12697, 19095, 27978, 41581, 60650, 89244, 129490, 188925, 272676, 394809, 566882, 815191, 1164510, 1664295, 2365698, 3361844, 4756030, 6723280, 9468138, 13319299
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

First differs from A304967 at a(10) = 50, A304967(10) = 49.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of positive integer matrices with only two columns and sum of entries equal to n, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 9 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}      {{1112222}}
                   {{1222}}    {{12222}}    {{112222}}      {{1122222}}
                   {{12}{12}}  {{12}{122}}  {{122222}}      {{1222222}}
                                            {{112}{122}}    {{112}{1222}}
                                            {{12}{1122}}    {{12}{11222}}
                                            {{12}{1222}}    {{12}{12222}}
                                            {{122}{122}}    {{122}{1122}}
                                            {{12}{12}{12}}  {{122}{1222}}
                                                            {{12}{12}{122}}
Inequivalent representatives of the a(8) = 20 matrices:
  [4 4] [3 5] [2 6] [1 7]
.
  [1 1] [1 1] [1 1] [2 1] [2 1] [1 2] [1 2] [3 1] [2 2] [2 2] [1 3]
  [3 3] [2 4] [1 5] [2 3] [1 4] [2 3] [1 4] [1 3] [2 2] [1 3] [1 3]
.
  [1 1] [1 1] [1 1] [1 1]
  [1 1] [1 1] [2 1] [1 2]
  [2 2] [1 3] [1 2] [1 2]
.
  [1 1]
  [1 1]
  [1 1]
  [1 1]
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat(1,(EulerT(vector(n, k, k-1)) + EulerT(vector(n, k, if(k%2, 0, (k+2)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019

Formula

a(2*n) = (A052847(2*n) + A003293(n))/2; a(2*n+1) = A052847(2*n+1)/2. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019

A320293 Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n with no 1's.

Original entry on oeis.org

0, 1, 1, 3, 3, 9, 11, 30, 45, 112, 195, 475, 901, 2136, 4349, 10156, 21565, 50003, 109325, 252761, 563785, 1303296, 2948555, 6826494, 15604053, 36210591, 83415487, 194094257, 449813607, 1049555795, 2444027917, 5718195984, 13367881473, 31357008065, 73546933115
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Comments

Also phylogenetic trees on integer partitions of n with no 1's.

Examples

			The a(2) = 1 through a(7) = 11 trees:
  (2)  (3)  (4)       (5)       (6)            (7)
            (22)      (32)      (33)           (43)
            ((2)(2))  ((2)(3))  (42)           (52)
                                (222)          (322)
                                ((2)(4))       ((2)(5))
                                ((3)(3))       ((3)(4))
                                ((2)(22))      ((2)(23))
                                ((2)(2)(2))    ((3)(22))
                                ((2)((2)(2)))  ((2)(2)(3))
                                               ((2)((2)(3)))
                                               ((3)((2)(2)))
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(23) and beyond from Andrew Howroyd, Oct 25 2018

A320291 Number of singleton-free multiset partitions of integer partitions of n with no 1's.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 3, 3, 7, 8, 15, 19, 36, 46, 79, 110, 181, 254, 407, 580, 907, 1309, 2004, 2909, 4410, 6407, 9599, 13984, 20782, 30252, 44677, 64967, 95414, 138563, 202527, 293583, 427442, 618337, 897023, 1295020, 1872696, 2697777, 3889964, 5591917, 8041593, 11535890
Offset: 0

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Examples

			The a(4) = 1 through a(10) = 15 multiset partitions:
  ((22))  ((23))  ((24))   ((25))   ((26))      ((27))      ((28))
                  ((33))   ((34))   ((35))      ((36))      ((37))
                  ((222))  ((223))  ((44))      ((45))      ((46))
                                    ((224))     ((225))     ((55))
                                    ((233))     ((234))     ((226))
                                    ((2222))    ((333))     ((235))
                                    ((22)(22))  ((2223))    ((244))
                                                ((22)(23))  ((334))
                                                            ((2224))
                                                            ((2233))
                                                            ((22222))
                                                            ((22)(24))
                                                            ((22)(33))
                                                            ((23)(23))
                                                            ((22)(222))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@Select[IntegerPartitions[n],FreeQ[#,1]&],FreeQ[Length/@#,1]&]],{n,20}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n,i,i>1)); concat([1], EulerT(EulerT(v)-v))} \\ Andrew Howroyd, Oct 25 2018

Formula

Euler transform of A083751. - Andrew Howroyd, Oct 25 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Oct 25 2018
Showing 1-6 of 6 results.