cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A138178 Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.

Original entry on oeis.org

1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629
Offset: 0

Views

Author

Vladeta Jovovic, Mar 03 2008

Keywords

Comments

Number of normal semistandard Young tableaux of size n, where a tableau is normal if its entries span an initial interval of positive integers. - Gus Wiseman, Feb 23 2018

Examples

			a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177.
From _Gus Wiseman_, Feb 23 2018: (Start)
The a(3) = 9 normal semistandard Young tableaux:
1   1 2   1 3   1 2   1 1   1 2 3   1 2 2   1 1 2   1 1 1
2   3     2     2     2
3
(End)
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(4) = 33 matrices:
[4]
.
[30][21][20][11][10][02][01]
[01][10][02][11][03][20][12]
.
[200][200][110][101][100][100][100][100][011][010][010][010][001][001][001]
[010][001][100][010][020][011][010][001][100][110][101][100][020][010][001]
[001][010][001][100][001][010][002][011][100][001][010][002][100][101][110]
.
[1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
[0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
[0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
[0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
		

Crossrefs

Programs

  • Maple
    gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
  • Mathematica
    Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)),{x,0,n}],{k,0,Infinity}],{n,0,20}]  (* Vaclav Kotesovec, Jul 03 2014 *)
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Sort[Reverse/@#]==#]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)

Formula

G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).
G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - Vladeta Jovovic, Dec 09 2009

Extensions

More terms from Alois P. Heinz, Sep 25 2008

A052847 G.f.: 1 / Product_{k>=1} (1-x^k)^(k-1).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 12, 18, 33, 52, 88, 138, 229, 354, 568, 880, 1378, 2110, 3260, 4942, 7527, 11320, 17031, 25394, 37842, 55956, 82630, 121300, 177677, 258980, 376626, 545352, 787784, 1133764, 1627657, 2329020, 3324559, 4731396, 6717774, 9512060
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler transform of sequence [0,1,2,3,...]. - Michael Somos, Jul 02 2004
Number of partitions of n objects of 2 colors, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Jan 23 2006
Number of partitions of n without 1s, one kind of 2s, two kinds of 3s, etc. - Joerg Arndt, Jul 31 2011
From Vaclav Kotesovec, Oct 17 2015: (Start)
In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.
(End)

Examples

			1 + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 12*x^6 + 18*x^7 + 33*x^8 + 52*x^9 + ...
From _Gus Wiseman_, Jan 22 2019: (Start)
The partitions described in Franklin T. Adams-Watters's comment are (n = 2 through 6):
  {{12}}  {{112}}  {{1112}}    {{11112}}    {{111112}}
          {{122}}  {{1122}}    {{11122}}    {{111122}}
                   {{1222}}    {{11222}}    {{111222}}
                   {{12}{12}}  {{12222}}    {{112222}}
                               {{12}{112}}  {{122222}}
                               {{12}{122}}  {{112}{112}}
                                            {{112}{122}}
                                            {{12}{1112}}
                                            {{12}{1122}}
                                            {{12}{1222}}
                                            {{122}{122}}
                                            {{12}{12}{12}}
(End)
		

Crossrefs

Cf. A000219 (v=0), A052847 (v=1), A263358 (v=2), A263359 (v=3), A263360 (v=4), A263361 (v=5), A263362 (v=6), A263363 (v=7), A263364 (v=8).

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= Set(C)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> n-1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 04 2015 after Alois P. Heinz
  • Mathematica
    Clear[a]; a[n_]:= a[n] = 1/n*Sum[(DivisorSigma[2,k]-DivisorSigma[1,k])*a[n-k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,100}] (* Vaclav Kotesovec, Mar 04 2015 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^(k+1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x*O(x^n))^(k-1)), n))}

Formula

a(n) = 1/n*Sum_{k=1..n} (sigma[2](k)-sigma[1](k))*a(n-k).
G.f.: exp( Sum_{k>0} ( x^k / (1 - x^k) )^2 / k ).
G.f.: exp( sum(n>=0, (sigma[2](n)-sigma[1](n)) *x^n/n ) ). - Joerg Arndt, Jul 31 2011
a(n) ~ 2^(1/36) * Zeta(3)^(1/36) * exp(1/12 - Pi^4/(432*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 3^(1/2) * n^(19/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 07 2015

Extensions

Edited by Vladeta Jovovic, Sep 10 2002

A322452 Number of factorizations of n into factors > 1 not including any prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n with no constant parts.

Examples

			The a(840) = 11 factorizations are (6*10*14), (6*140), (10*84), (12*70), (14*60), (15*56), (20*42), (21*40), (24*35), (28*30), (840).
		

Crossrefs

Positions of 0's are the prime powers A000961.

Programs

  • Mathematica
    acfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[acfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],!PrimePowerQ[#]&]}]];
    Table[Length[acfacs[n]],{n,100}]
  • PARI
    A322452(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(1A322452(n/d, d))); (s)); \\ Antti Karttunen, Jan 03 2019
    
  • PARI
    first(n) = my(res=vector(n)); for(i=1, n, f=factor(i); v=vecsort(f[,2] , , 4); f[, 2] = v; fb = factorback(f); if(fb==i, res[i] = A322452(i), res[i] = res[fb])); res \\ A322452 the function above \\ David A. Corneth, Jan 03 2019

Extensions

More terms from Antti Karttunen, Jan 03 2019

A321760 Number of non-isomorphic multiset partitions of weight n with no constant parts or vertices that appear in only one part.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 7, 9, 37, 79, 273, 755, 2648, 8432, 29872, 104624, 384759, 1432655, 5502563, 21533141, 86291313, 352654980, 1471073073, 6253397866, 27083003687, 119399628021, 535591458635, 2443030798539, 11326169401988, 53343974825122, 255121588496338
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n in which every row and column has at least two nonzero entries.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(7) = 9 multiset partitions:
  {{1,2},{1,2}}  {{1,2},{1,2,2}}  {{1,1,2},{1,2,2}}    {{1,1,2},{1,2,2,2}}
                                  {{1,2},{1,1,2,2}}    {{1,2},{1,1,2,2,2}}
                                  {{1,2},{1,2,2,2}}    {{1,2},{1,2,2,2,2}}
                                  {{1,2,2},{1,2,2}}    {{1,2,2},{1,1,2,2}}
                                  {{1,2,3},{1,2,3}}    {{1,2,2},{1,2,2,2}}
                                  {{1,2},{1,2},{1,2}}  {{1,2,3},{1,2,3,3}}
                                  {{1,2},{1,3},{2,3}}  {{1,2},{1,2},{1,2,2}}
                                                       {{1,2},{1,3},{2,3,3}}
                                                       {{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A321401 Number of non-isomorphic strict self-dual multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 29, 57, 117, 240, 498
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Comments

Also the number of nonnegative integer symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows (or columns) are all different.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1},{2}}  {{1},{2,2}}    {{1,1},{2,2}}      {{1,1},{1,2,2}}
                    {{2},{1,2}}    {{1},{2,2,2}}      {{1,1},{2,2,2}}
                    {{1},{2},{3}}  {{2},{1,2,2}}      {{1,2},{1,2,2}}
                                   {{1},{2},{3,3}}    {{1},{2,2,2,2}}
                                   {{1},{3},{2,3}}    {{2},{1,2,2,2}}
                                   {{1},{2},{3},{4}}  {{1},{2,2},{3,3}}
                                                      {{1},{2},{3,3,3}}
                                                      {{1},{3},{2,3,3}}
                                                      {{2},{1,2},{3,3}}
                                                      {{2},{1,3},{2,3}}
                                                      {{1},{2},{3},{4,4}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

A322454 Number of multiset partitions with no constant parts of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 4, 0, 4, 0, 3, 3, 1, 0, 7, 4, 1, 9, 4, 0, 7, 0, 11, 3, 1, 5, 15, 0, 1, 4, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(30) = 7 multiset partitions:
    {{1,1,1,2,2,3}}
   {{1,2},{1,1,2,3}}
   {{1,3},{1,1,2,2}}
   {{2,3},{1,1,1,2}}
   {{1,1,2},{1,2,3}}
   {{1,1,3},{1,2,2}}
  {{1,2},{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[nrmptn[n]],Min@@Length/@Union/@#>1&]],{n,20}]

A323654 Number of non-isomorphic multiset partitions of weight n with no constant parts and only two distinct vertices.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 50, 69, 125, 177, 301, 440, 717, 1055, 1675, 2471, 3835, 5660, 8627, 12697, 19095, 27978, 41581, 60650, 89244, 129490, 188925, 272676, 394809, 566882, 815191, 1164510, 1664295, 2365698, 3361844, 4756030, 6723280, 9468138, 13319299
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

First differs from A304967 at a(10) = 50, A304967(10) = 49.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of positive integer matrices with only two columns and sum of entries equal to n, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 9 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}      {{1112222}}
                   {{1222}}    {{12222}}    {{112222}}      {{1122222}}
                   {{12}{12}}  {{12}{122}}  {{122222}}      {{1222222}}
                                            {{112}{122}}    {{112}{1222}}
                                            {{12}{1122}}    {{12}{11222}}
                                            {{12}{1222}}    {{12}{12222}}
                                            {{122}{122}}    {{122}{1122}}
                                            {{12}{12}{12}}  {{122}{1222}}
                                                            {{12}{12}{122}}
Inequivalent representatives of the a(8) = 20 matrices:
  [4 4] [3 5] [2 6] [1 7]
.
  [1 1] [1 1] [1 1] [2 1] [2 1] [1 2] [1 2] [3 1] [2 2] [2 2] [1 3]
  [3 3] [2 4] [1 5] [2 3] [1 4] [2 3] [1 4] [1 3] [2 2] [1 3] [1 3]
.
  [1 1] [1 1] [1 1] [1 1]
  [1 1] [1 1] [2 1] [1 2]
  [2 2] [1 3] [1 2] [1 2]
.
  [1 1]
  [1 1]
  [1 1]
  [1 1]
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat(1,(EulerT(vector(n, k, k-1)) + EulerT(vector(n, k, if(k%2, 0, (k+2)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019

Formula

a(2*n) = (A052847(2*n) + A003293(n))/2; a(2*n+1) = A052847(2*n+1)/2. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019

A321402 Number of non-isomorphic strict self-dual multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 8, 14, 27, 53, 105
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Comments

Also the number of nonnegative integer symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows are all different and none sums to 1.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 14 multiset partitions:
  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}      {{1111111}}
                   {{11}{22}}  {{11}{122}}  {{111}{222}}    {{111}{1222}}
                               {{11}{222}}  {{112}{122}}    {{111}{2222}}
                               {{12}{122}}  {{11}{2222}}    {{112}{1222}}
                                            {{12}{1222}}    {{11}{22222}}
                                            {{22}{1122}}    {{12}{12222}}
                                            {{11}{22}{33}}  {{122}{1122}}
                                            {{12}{13}{23}}  {{22}{11222}}
                                                            {{11}{12}{233}}
                                                            {{11}{22}{233}}
                                                            {{11}{22}{333}}
                                                            {{11}{23}{233}}
                                                            {{12}{13}{233}}
                                                            {{13}{23}{123}}
		

Crossrefs

Showing 1-8 of 8 results.