A302545
Number of non-isomorphic multiset partitions of weight n with no singletons.
Original entry on oeis.org
1, 0, 2, 3, 12, 23, 84, 204, 682, 1977, 6546, 21003, 72038, 248055, 888771, 3240578, 12152775, 46527471, 182339441, 729405164, 2979121279, 12407308136, 52670355242, 227725915268, 1002285274515, 4487915293698, 20434064295155, 94559526596293, 444527730210294, 2122005930659752
Offset: 0
The a(4) = 12 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
The set-system version is
A330054 (no endpoints) or
A306005 (no singletons).
Non-isomorphic multiset partitions are
A007716.
Set-systems with no singletons are
A016031.
Cf.
A049311,
A283877,
A293606,
A293607,
A306008,
A317533,
A317794,
A317795,
A320665,
A330053,
A330055,
A330058.
-
\\ compare with similar program for A007716.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 15 2023
A330055
Number of non-isomorphic set-systems of weight n with no singletons or endpoints.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 1, 3, 5, 16, 24, 90, 179, 567, 1475, 4623, 13650, 44475, 144110, 492017, 1706956, 6124330, 22442687, 84406276, 324298231, 1273955153, 5106977701, 20885538133, 87046940269, 369534837538, 1596793560371, 7019424870960, 31374394197536, 142514998263015
Offset: 0
Non-isomorphic representatives of the a(7) = 1 through a(10) = 16 set-systems:
{12}{13}{123} {12}{134}{234} {12}{134}{1234} {12}{1345}{2345}
{12}{34}{1234} {123}{124}{134} {123}{124}{1234}
{12}{13}{24}{34} {12}{13}{14}{234} {123}{145}{2345}
{12}{13}{23}{123} {12}{345}{12345}
{12}{13}{24}{134} {12}{13}{124}{134}
{12}{13}{124}{234}
{12}{13}{14}{1234}
{12}{13}{24}{1234}
{12}{13}{245}{345}
{12}{13}{45}{2345}
{12}{34}{123}{124}
{12}{34}{125}{345}
{12}{34}{135}{245}
{13}{24}{123}{124}
{12}{13}{14}{23}{24}
{12}{13}{24}{35}{45}
Non-isomorphic set-systems with no singletons are
A306005.
Non-isomorphic set-systems with no endpoints are
A330054.
Non-isomorphic set-systems counted by vertices are
A000612.
Non-isomorphic set-systems counted by weight are
A283877.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g-subst(g,x,x^2)}
S(q, t, k)={(x-x^2)*sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q, t, n\t)-S(q,t,n\t),x,x^t)/t )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024
A330052
Number of non-isomorphic set-systems of weight n with at least one endpoint.
Original entry on oeis.org
0, 1, 2, 4, 8, 18, 40, 94, 228, 579, 1508, 4092, 11478, 33337, 100016, 309916, 990008, 3257196, 11021851, 38314009, 136657181, 499570867, 1869792499, 7158070137, 28003286261, 111857491266, 455852284867, 1893959499405, 8017007560487, 34552315237016, 151534813272661
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions:
{1} {12} {123} {1234} {12345}
{1}{2} {1}{12} {1}{123} {1}{1234}
{1}{23} {12}{13} {12}{123}
{1}{2}{3} {1}{234} {12}{134}
{12}{34} {1}{2345}
{1}{2}{13} {12}{345}
{1}{2}{34} {1}{12}{13}
{1}{2}{3}{4} {1}{12}{23}
{1}{12}{34}
{1}{2}{123}
{1}{2}{134}
{1}{2}{345}
{1}{23}{45}
{2}{13}{14}
{1}{2}{3}{12}
{1}{2}{3}{14}
{1}{2}{3}{45}
{1}{2}{3}{4}{5}
The complement is counted by
A330054.
The multiset partition version is
A330058.
Non-isomorphic set-systems with at least one singleton are
A330053.
Non-isomorphic set-systems counted by vertices are
A000612.
Non-isomorphic set-systems counted by weight are
A283877.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
brute[{}]:={};brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]],UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
A330058
Number of non-isomorphic multiset partitions of weight n with at least one endpoint.
Original entry on oeis.org
0, 1, 2, 7, 21, 68, 214, 706, 2335, 7968, 27661, 98366, 357212, 1326169, 5027377, 19459252, 76850284, 309531069, 1270740646, 5314727630, 22633477157, 98096319485, 432490992805, 1938762984374, 8832924638252, 40882143931620, 192148753444380, 916747097916418
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
{1} {12} {122} {1222}
{1}{2} {123} {1233}
{1}{22} {1234}
{1}{23} {1}{222}
{2}{12} {12}{22}
{1}{2}{2} {1}{233}
{1}{2}{3} {12}{33}
{1}{234}
{12}{34}
{13}{23}
{2}{122}
{3}{123}
{1}{1}{23}
{1}{2}{22}
{1}{2}{33}
{1}{2}{34}
{1}{3}{23}
{2}{2}{12}
{1}{2}{2}{2}
{1}{2}{3}{3}
{1}{2}{3}{4}
The case of set-systems is
A330053 (singletons) or
A330052 (endpoints).
The complement is counted by
A302545.
A330056
Number of set-systems with n vertices and no singletons or endpoints.
Original entry on oeis.org
1, 1, 1, 6, 1724, 66963208, 144115175600855641, 1329227995784915809349010517957163445, 226156424291633194186662080095093568675422295082604716043360995547325655259
Offset: 0
The a(3) = 6 set-systems:
{}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
The version for non-isomorphic set-systems is
A330055 (by weight).
Set-systems with no singletons are
A016031.
Set-systems with no endpoints are
A330059.
Non-isomorphic set-systems with no singletons are
A306005 (by weight).
Non-isomorphic set-systems with no endpoints are
A330054, (by weight).
Non-isomorphic set-systems counted by vertices are
A000612.
Non-isomorphic set-systems counted by weight are
A283877.
Cf.
A007716,
A055621,
A008299,
A302545,
A317533,
A317794,
A319559,
A320665,
A321405,
A330052,
A330058.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
\\ Here AS2(n,k) is A008299 (associated Stirling of 2nd kind)
AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))} \\ Andrew Howroyd, Jan 16 2023
A330059
Number of set-systems with n vertices and no endpoints.
Original entry on oeis.org
1, 1, 2, 63, 29471, 2144945976, 9223371624669871587, 170141183460469227599616678821978424151, 57896044618658097711785492504343953752410420469299789800819363538011879603532
Offset: 0
The a(2) = 2 set-systems are {} and {{1},{2},{1,2}}. The a(3) = 63 set-systems are:
0 {2}{3}{12}{13} {1}{3}{12}{13}{23}
{1}{2}{12} {2}{12}{13}{23} {2}{3}{12}{13}{23}
{1}{3}{13} {2}{3}{12}{123} {1}{2}{12}{23}{123}
{2}{3}{23} {2}{3}{13}{123} {1}{2}{13}{23}{123}
{12}{13}{23} {3}{12}{13}{23} {1}{3}{12}{13}{123}
{1}{23}{123} {1}{13}{23}{123} {1}{3}{12}{23}{123}
{2}{13}{123} {2}{12}{13}{123} {1}{3}{13}{23}{123}
{3}{12}{123} {2}{12}{23}{123} {2}{3}{12}{13}{123}
{12}{13}{123} {2}{13}{23}{123} {2}{3}{12}{23}{123}
{12}{23}{123} {3}{12}{13}{123} {2}{3}{13}{23}{123}
{13}{23}{123} {3}{12}{23}{123} {1}{12}{13}{23}{123}
{1}{2}{13}{23} {3}{13}{23}{123} {2}{12}{13}{23}{123}
{1}{2}{3}{123} {12}{13}{23}{123} {3}{12}{13}{23}{123}
{1}{3}{12}{23} {1}{2}{3}{12}{13} {1}{2}{3}{12}{13}{23}
{1}{12}{13}{23} {1}{2}{3}{12}{23} {1}{2}{3}{12}{13}{123}
{1}{2}{13}{123} {1}{2}{3}{13}{23} {1}{2}{3}{12}{23}{123}
{1}{2}{23}{123} {1}{2}{12}{13}{23} {1}{2}{3}{13}{23}{123}
{1}{3}{12}{123} {1}{2}{3}{12}{123} {1}{2}{12}{13}{23}{123}
{1}{3}{23}{123} {1}{2}{3}{13}{123} {1}{3}{12}{13}{23}{123}
{1}{12}{13}{123} {1}{2}{3}{23}{123} {2}{3}{12}{13}{23}{123}
{1}{12}{23}{123} {1}{2}{12}{13}{123} {1}{2}{3}{12}{13}{23}{123}
The case with no singletons is
A330056.
The unlabeled version is
A330054 (by weight) or
A330124 (by vertices).
Set-systems with no singletons are
A016031.
Non-isomorphic set-systems with no singletons are
A306005 (by weight).
Cf.
A000612,
A007716,
A055621,
A302545,
A317533,
A317794,
A319559,
A320665,
A321405,
A330052,
A330057,
A330058.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-1)*sum(j=0, k, stirling(k,j,2)*2^(j*(n-k)) ))} \\ Andrew Howroyd, Jan 16 2023
A330057
Number of set-systems covering n vertices with no singletons or endpoints.
Original entry on oeis.org
1, 0, 0, 5, 1703, 66954642, 144115175199102143, 1329227995784915808340204290157341181, 226156424291633194186662080095093568664788471116325389572604136316742486364
Offset: 0
The a(3) = 5 set-systems:
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
The version for non-isomorphic set-systems is
A330055 (by weight).
The non-covering version is
A330056.
Set-systems with no singletons are
A016031.
Set-systems with no endpoints are
A330059.
Non-isomorphic set-systems with no singletons are
A306005 (by weight).
Non-isomorphic set-systems with no endpoints are
A330054 (by weight).
Non-isomorphic set-systems counted by vertices are
A000612.
Non-isomorphic set-systems counted by weight are
A283877.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
\\ here b(n) is A330056(n).
AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
b(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))}
a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*b(n-k))} \\ Andrew Howroyd, Jan 16 2023
A330124
Number of unlabeled set-systems with n vertices and no endpoints.
Original entry on oeis.org
1, 1, 2, 22, 1776
Offset: 0
Non-isomorphic representatives of the a(3) = 22 set-systems:
0
{1}{2}{12}
{12}{13}{23}
{1}{23}{123}
{12}{13}{123}
{1}{2}{13}{23}
{1}{2}{3}{123}
{1}{12}{13}{23}
{1}{2}{13}{123}
{1}{12}{13}{123}
{1}{12}{23}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}
{1}{2}{12}{13}{23}
{1}{2}{3}{12}{123}
{1}{2}{12}{13}{123}
{1}{2}{13}{23}{123}
{1}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{123}
{1}{2}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}{123}
Partial sums of the covering case
A330196.
Unlabeled set-systems with no endpoints counted by weight are
A330054.
Unlabeled set-systems with no singletons are
A317794.
Unlabeled set-systems counted by vertices are
A000612.
Unlabeled set-systems counted by weight are
A283877.
The case with no singletons is
A320665.
A330196
Number of unlabeled set-systems covering n vertices with no endpoints.
Original entry on oeis.org
1, 0, 1, 20, 1754
Offset: 0
Non-isomorphic representatives of the a(3) = 20 set-systems:
{12}{13}{23}
{1}{23}{123}
{12}{13}{123}
{1}{2}{13}{23}
{1}{2}{3}{123}
{1}{12}{13}{23}
{1}{2}{13}{123}
{1}{12}{13}{123}
{1}{12}{23}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}
{1}{2}{12}{13}{23}
{1}{2}{3}{12}{123}
{1}{2}{12}{13}{123}
{1}{2}{13}{23}{123}
{1}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{123}
{1}{2}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}{123}
First differences of the non-covering version
A330124.
Unlabeled set-systems with no endpoints counted by vertices are
A317794.
Unlabeled set-systems with no endpoints counted by weight are
A330054.
Unlabeled set-systems counted by vertices are
A000612.
Unlabeled set-systems counted by weight are
A283877.
Showing 1-9 of 9 results.
Comments