A330059 Number of set-systems with n vertices and no endpoints.
1, 1, 2, 63, 29471, 2144945976, 9223371624669871587, 170141183460469227599616678821978424151, 57896044618658097711785492504343953752410420469299789800819363538011879603532
Offset: 0
Keywords
Examples
The a(2) = 2 set-systems are {} and {{1},{2},{1,2}}. The a(3) = 63 set-systems are: 0 {2}{3}{12}{13} {1}{3}{12}{13}{23} {1}{2}{12} {2}{12}{13}{23} {2}{3}{12}{13}{23} {1}{3}{13} {2}{3}{12}{123} {1}{2}{12}{23}{123} {2}{3}{23} {2}{3}{13}{123} {1}{2}{13}{23}{123} {12}{13}{23} {3}{12}{13}{23} {1}{3}{12}{13}{123} {1}{23}{123} {1}{13}{23}{123} {1}{3}{12}{23}{123} {2}{13}{123} {2}{12}{13}{123} {1}{3}{13}{23}{123} {3}{12}{123} {2}{12}{23}{123} {2}{3}{12}{13}{123} {12}{13}{123} {2}{13}{23}{123} {2}{3}{12}{23}{123} {12}{23}{123} {3}{12}{13}{123} {2}{3}{13}{23}{123} {13}{23}{123} {3}{12}{23}{123} {1}{12}{13}{23}{123} {1}{2}{13}{23} {3}{13}{23}{123} {2}{12}{13}{23}{123} {1}{2}{3}{123} {12}{13}{23}{123} {3}{12}{13}{23}{123} {1}{3}{12}{23} {1}{2}{3}{12}{13} {1}{2}{3}{12}{13}{23} {1}{12}{13}{23} {1}{2}{3}{12}{23} {1}{2}{3}{12}{13}{123} {1}{2}{13}{123} {1}{2}{3}{13}{23} {1}{2}{3}{12}{23}{123} {1}{2}{23}{123} {1}{2}{12}{13}{23} {1}{2}{3}{13}{23}{123} {1}{3}{12}{123} {1}{2}{3}{12}{123} {1}{2}{12}{13}{23}{123} {1}{3}{23}{123} {1}{2}{3}{13}{123} {1}{3}{12}{13}{23}{123} {1}{12}{13}{123} {1}{2}{3}{23}{123} {2}{3}{12}{13}{23}{123} {1}{12}{23}{123} {1}{2}{12}{13}{123} {1}{2}{3}{12}{13}{23}{123}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..11
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
PARI
a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-1)*sum(j=0, k, stirling(k,j,2)*2^(j*(n-k)) ))} \\ Andrew Howroyd, Jan 16 2023
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^k * binomial(n,k) * 2^(2^(n-k)-1) * Stirling2(k,j) * 2^(j*(n-k)). - Andrew Howroyd, Jan 16 2023
Extensions
Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023
Comments