cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A302545 Number of non-isomorphic multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 12, 23, 84, 204, 682, 1977, 6546, 21003, 72038, 248055, 888771, 3240578, 12152775, 46527471, 182339441, 729405164, 2979121279, 12407308136, 52670355242, 227725915268, 1002285274515, 4487915293698, 20434064295155, 94559526596293, 444527730210294, 2122005930659752
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. A singleton is a multiset of size 1. The weight of a multiset partition is the sum of sizes of its elements. Weight is generally not the same as number of vertices.
Also non-isomorphic multiset partitions of weight n with no endpoints, where an endpoint is a vertex appearing only once (degree 1). For example, non-isomorphic representations of the a(4) = 12 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}

Examples

			The a(4) = 12 multiset partitions:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1,1},{1,1}}
  {{1,1},{2,2}}
  {{1,2},{1,2}}
  {{1,2},{2,2}}
  {{1,2},{3,3}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
		

Crossrefs

The set-system version is A330054 (no endpoints) or A306005 (no singletons).
Non-isomorphic multiset partitions are A007716.
Set-systems with no singletons are A016031.

Programs

  • PARI
    \\ compare with similar program for A007716.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 15 2023

Extensions

Extended by Gus Wiseman, Dec 09 2019
Terms a(11) and beyond from Andrew Howroyd, Jan 15 2023

A306005 Number of non-isomorphic set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

A set-system is a finite set of finite nonempty sets (edges). The weight is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 12 set-systems:
  {{1,2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{3,4},{1,2,3,4}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = A283877(n) - A330053(n). - Gus Wiseman, Dec 09 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019

A330052 Number of non-isomorphic set-systems of weight n with at least one endpoint.

Original entry on oeis.org

0, 1, 2, 4, 8, 18, 40, 94, 228, 579, 1508, 4092, 11478, 33337, 100016, 309916, 990008, 3257196, 11021851, 38314009, 136657181, 499570867, 1869792499, 7158070137, 28003286261, 111857491266, 455852284867, 1893959499405, 8017007560487, 34552315237016, 151534813272661
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions:
  {1}  {12}    {123}      {1234}        {12345}
       {1}{2}  {1}{12}    {1}{123}      {1}{1234}
               {1}{23}    {12}{13}      {12}{123}
               {1}{2}{3}  {1}{234}      {12}{134}
                          {12}{34}      {1}{2345}
                          {1}{2}{13}    {12}{345}
                          {1}{2}{34}    {1}{12}{13}
                          {1}{2}{3}{4}  {1}{12}{23}
                                        {1}{12}{34}
                                        {1}{2}{123}
                                        {1}{2}{134}
                                        {1}{2}{345}
                                        {1}{23}{45}
                                        {2}{13}{14}
                                        {1}{2}{3}{12}
                                        {1}{2}{3}{14}
                                        {1}{2}{3}{45}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

The complement is counted by A330054.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one singleton are A330053.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    brute[{}]:={};brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]],UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]

Formula

a(n) = A283877(n) - A330054(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A330058 Number of non-isomorphic multiset partitions of weight n with at least one endpoint.

Original entry on oeis.org

0, 1, 2, 7, 21, 68, 214, 706, 2335, 7968, 27661, 98366, 357212, 1326169, 5027377, 19459252, 76850284, 309531069, 1270740646, 5314727630, 22633477157, 98096319485, 432490992805, 1938762984374, 8832924638252, 40882143931620, 192148753444380, 916747097916418
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
An endpoint is a vertex appearing only once (degree 1).
Also the number of non-isomorphic multiset partitions of weight n with at least one singleton.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
  {1}  {12}    {122}      {1222}
       {1}{2}  {123}      {1233}
               {1}{22}    {1234}
               {1}{23}    {1}{222}
               {2}{12}    {12}{22}
               {1}{2}{2}  {1}{233}
               {1}{2}{3}  {12}{33}
                          {1}{234}
                          {12}{34}
                          {13}{23}
                          {2}{122}
                          {3}{123}
                          {1}{1}{23}
                          {1}{2}{22}
                          {1}{2}{33}
                          {1}{2}{34}
                          {1}{3}{23}
                          {2}{2}{12}
                          {1}{2}{2}{2}
                          {1}{2}{3}{3}
                          {1}{2}{3}{4}
		

Crossrefs

The case of set-systems is A330053 (singletons) or A330052 (endpoints).
The complement is counted by A302545.

Formula

a(n) = A007716(n) - A302545(n). - Andrew Howroyd, Jan 15 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 15 2023

A330196 Number of unlabeled set-systems covering n vertices with no endpoints.

Original entry on oeis.org

1, 0, 1, 20, 1754
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. An endpoint is a vertex appearing only once (degree 1).

Examples

			Non-isomorphic representatives of the a(3) = 20 set-systems:
  {12}{13}{23}
  {1}{23}{123}
  {12}{13}{123}
  {1}{2}{13}{23}
  {1}{2}{3}{123}
  {1}{12}{13}{23}
  {1}{2}{13}{123}
  {1}{12}{13}{123}
  {1}{12}{23}{123}
  {12}{13}{23}{123}
  {1}{2}{3}{12}{13}
  {1}{2}{12}{13}{23}
  {1}{2}{3}{12}{123}
  {1}{2}{12}{13}{123}
  {1}{2}{13}{23}{123}
  {1}{12}{13}{23}{123}
  {1}{2}{3}{12}{13}{23}
  {1}{2}{3}{12}{13}{123}
  {1}{2}{12}{13}{23}{123}
  {1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

First differences of the non-covering version A330124.
The "multi" version is A302545.
Unlabeled set-systems with no endpoints counted by vertices are A317794.
Unlabeled set-systems with no endpoints counted by weight are A330054.
Unlabeled set-systems counted by vertices are A000612.
Unlabeled set-systems counted by weight are A283877.
Showing 1-5 of 5 results.