cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A317757 Number of non-isomorphic multiset partitions of size n such that the blocks have empty intersection.

Original entry on oeis.org

1, 0, 1, 4, 17, 56, 205, 690, 2446, 8506, 30429, 109449, 402486, 1501424, 5714194, 22132604, 87383864, 351373406, 1439320606, 6003166059, 25488902820, 110125079184, 483987225922, 2162799298162, 9823464989574, 45332196378784, 212459227340403, 1010898241558627, 4881398739414159
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 17 multiset partitions:
  {1}{234},{2}{111},{2}{113},{11}{22},{11}{23},{12}{34},
  {1}{1}{22},{1}{1}{23},{1}{2}{11},{1}{2}{12},{1}{2}{13},{1}{2}{34},{2}{3}{11},
  {1}{1}{1}{2},{1}{1}{2}{2},{1}{1}{2}{3},{1}{2}{3}{4}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]]],{n,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
    a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q,n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f,k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t], O(x*x^n) ))/if(k,1-x^k,1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023

Extensions

a(8)-a(10) from Gus Wiseman, Sep 27 2018
a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, May 30 2023

A035310 Let f(n) = number of ways to factor n = A001055(n); a(n) = sum of f(k) over all terms k in A025487 that have n factors.

Original entry on oeis.org

1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729, 37195337408, 289517846210, 2352125666883, 19841666995265, 173888579505200, 1577888354510786, 14820132616197925, 143746389756336173, 1438846957477988926
Offset: 1

Views

Author

Keywords

Comments

Ways of partitioning an n-multiset with multiplicities some partition of n.
Number of multiset partitions of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities. The (weakly) normal version is A255906. - Gus Wiseman, Dec 31 2019

Examples

			a(3) = 12 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=3, f(12)=4, f(30)=5 and 3+4+5 = 12.
From _Gus Wiseman_, Dec 31 2019: (Start)
The a(1) = 1 through a(3) = 12 multiset partitions of strongly normal multisets:
  {{1}}  {{1,1}}    {{1,1,1}}
         {{1,2}}    {{1,1,2}}
         {{1},{1}}  {{1,2,3}}
         {{1},{2}}  {{1},{1,1}}
                    {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,1}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1},{1},{1}}
                    {{1},{1},{2}}
                    {{1},{2},{3}}
(End)
		

Crossrefs

Sequence A035341 counts the ordered cases. Tables A093936 and A095705 distribute the values; e.g. 81199 = 30 + 536 + 3036 + 6181 + 10726 + 11913 + 14548 + 13082 + 21147.
Row sums of A317449.
The uniform case is A317584.
The case with empty intersection is A317755.
The strict case is A317775.
The constant case is A047968.
The set-system case is A318402.
The case of strict parts is A330783.
Multiset partitions of integer partitions are A001970.
Unlabeled multiset partitions are A007716.

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, g(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    b:= proc(n, i, l)
          `if`(n=0, g(mul(ithprime(t)^l[t], t=1..nops(l))$2),
          `if`(i<1, 0, add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
        end:
    a:= n-> b(n$2, []):
    seq(a(n), n=1..10);  # Alois P. Heinz, May 26 2013
  • Mathematica
    g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; b[n_, i_, l_] := If[n == 0, g[p = Product[Prime[t]^l[[t]], {t, 1, Length[l]}], p], If[i < 1, 0, Sum[b[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := b[n, n, {}]; Table[Print[an = a[n]]; an, {n, 1, 13}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime, prime
    from operator import mul
    @cacheit
    def g(n, k):
        return (0 if n > k else 1) + (0 if isprime(n) else sum(g(n//d, d) for d in divisors(n)[1:-1] if d <= k))
    @cacheit
    def b(n, i, l):
        if n==0:
            p = reduce(mul, (prime(t + 1)**l[t] for t in range(len(l))))
            return g(p, p)
        else:
            return 0 if i<1 else sum([b(n - i*j, i - 1, l + [i]*j) for j in range(n//i + 1)])
    def a(n):
        return b(n, n, [])
    for n in range(1, 11): print(a(n)) # Indranil Ghosh, Aug 19 2017, after Maple code
    

Extensions

More terms from Erich Friedman.
81199 from Alford Arnold, Mar 04 2008
a(10) from Alford Arnold, Mar 31 2008
a(10) corrected by Alford Arnold, Aug 07 2008
a(11)-a(13) from Alois P. Heinz, May 26 2013
a(14) from Alois P. Heinz, Sep 27 2014
a(15) from Alois P. Heinz, Jan 10 2015
Terms a(16) and beyond from Andrew Howroyd, Dec 30 2020

A317752 Number of multiset partitions of normal multisets of size n such that the blocks have empty intersection.

Original entry on oeis.org

0, 1, 8, 49, 305, 1984, 13686, 100124, 776885, 6386677, 55532358, 509549386, 4921352952, 49899820572, 529807799836, 5876162077537, 67928460444139, 816764249684450, 10195486840926032, 131896905499007474, 1765587483656124106, 24419774819813602870
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(3) = 8 multiset partitions with empty intersection:
  {{2},{1,1}}
  {{1},{2,2}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{1},{2}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,allnorm[n]}]],{n,6}]
  • PARI
    P(n,k)={1/prod(i=1, n, (1 - x^i*y + O(x*x^n))^binomial(k+i-1, k-1))}
    R(n,k)={my(p=P(n,k), q=p/(1-y+O(y*y^n))); Vec(sum(i=2, n, polcoef(p,i,y) + polcoef(q,i,y)*sum(j=1, n\i, (-1)^j*binomial(k,j)*x^(i*j))), -n)}
    seq(n)={sum(k=2, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Feb 05 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 05 2021

A319781 Number of multiset partitions of integer partitions of n with empty intersection. Number of relatively prime factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 0, 0, 1, 3, 9, 21, 48, 103, 214, 436, 863, 1689
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3) = 1 through a(5) = 9 multiset partitions:
3: {{1},{2}}
4: {{1},{3}}
   {{2},{1,1}}
   {{1},{1},{2}}
5: {{1},{4}}
   {{2},{3}}
   {{3},{1,1}}
   {{1},{2,2}}
   {{1},{1},{3}}
   {{1},{2},{2}}
   {{2},{1,1,1}}
   {{1},{2},{1,1}}
   {{1},{1},{1},{2}}
		

Crossrefs

A319778 Number of non-isomorphic set systems of weight n with empty intersection whose dual is also a set system with empty intersection.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 13, 28, 72, 181, 483
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The dual of a multiset partition has empty intersection iff no part contains all the vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 13 multiset partitions:
2: {{1},{2}}
3: {{1},{2},{3}}
4: {{1},{3},{2,3}}
   {{1},{2},{3},{4}}
5: {{1},{2,4},{3,4}}
   {{2},{1,3},{2,3}}
   {{1},{2},{3},{2,3}}
   {{1},{2},{4},{3,4}}
   {{1},{2},{3},{4},{5}}
6: {{3},{1,4},{2,3,4}}
   {{1,2},{1,3},{2,3}}
   {{1,3},{2,4},{3,4}}
   {{1},{2},{1,3},{2,3}}
   {{1},{2},{3,5},{4,5}}
   {{1},{3},{4},{2,3,4}}
   {{1},{3},{2,4},{3,4}}
   {{1},{4},{2,4},{3,4}}
   {{2},{3},{1,3},{2,3}}
   {{2},{4},{1,2},{3,4}}
   {{1},{2},{3},{4},{3,4}}
   {{1},{2},{3},{5},{4,5}}
   {{1},{2},{3},{4},{5},{6}}
		

Crossrefs

A326912 BII-numbers of pairwise intersecting set-systems with empty intersection.

Original entry on oeis.org

0, 52, 116, 772, 832, 836, 1072, 1076, 1136, 1140, 1796, 1856, 1860, 2320, 2368, 2384, 2592, 2624, 2656, 2880, 3088, 3104, 3120, 3136, 3152, 3168, 3184, 3344, 3392, 3408, 3616, 3648, 3680, 3904, 4132, 4148, 4196, 4212, 4612, 4640, 4644, 4672, 4676, 4704, 4708
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all pairwise intersecting set-systems with empty intersection, together with their BII-numbers, begins:
     0: {}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   772: {{1,2},{1,4},{2,4}}
   832: {{1,2,3},{1,4},{2,4}}
   836: {{1,2},{1,2,3},{1,4},{2,4}}
  1072: {{1,3},{2,3},{1,2,4}}
  1076: {{1,2},{1,3},{2,3},{1,2,4}}
  1136: {{1,3},{2,3},{1,2,3},{1,2,4}}
  1140: {{1,2},{1,3},{2,3},{1,2,3},{1,2,4}}
  1796: {{1,2},{1,4},{2,4},{1,2,4}}
  1856: {{1,2,3},{1,4},{2,4},{1,2,4}}
  1860: {{1,2},{1,2,3},{1,4},{2,4},{1,2,4}}
  2320: {{1,3},{1,4},{3,4}}
  2368: {{1,2,3},{1,4},{3,4}}
  2384: {{1,3},{1,2,3},{1,4},{3,4}}
  2592: {{2,3},{2,4},{3,4}}
  2624: {{1,2,3},{2,4},{3,4}}
  2656: {{2,3},{1,2,3},{2,4},{3,4}}
  2880: {{1,2,3},{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],(#==0||Intersection@@bpe/@bpe[#]=={})&&stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&]

A319077 Number of non-isomorphic strict multiset partitions (sets of multisets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 1, 3, 12, 37, 130, 428, 1481, 5091, 17979, 64176, 234311, 869645, 3295100, 12720494, 50083996, 200964437, 821845766, 3423694821, 14524845181, 62725701708, 275629610199, 1231863834775, 5597240308384, 25844969339979, 121224757935416, 577359833539428, 2791096628891679
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 12 strict multiset partitions with empty intersection:
2: {{1},{2}}
3: {{1},{2,2}}
   {{1},{2,3}}
   {{1},{2},{3}}
4: {{1},{2,2,2}}
   {{1},{2,3,3}}
   {{1},{2,3,4}}
   {{1,1},{2,2}}
   {{1,2},{3,3}}
   {{1,2},{3,4}}
   {{1},{2},{1,2}}
   {{1},{2},{2,2}}
   {{1},{2},{3,3}}
   {{1},{2},{3,4}}
   {{1},{3},{2,3}}
   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, subst(x*Ser(K(q, t, n\t)/t), x, x^t))}
    a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q,n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f,k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t] - subst(x^(t*k)*u[t] + O(x*x^(n\2)), x, x^2), O(x*x^n) ))*if(k,1+x^k,1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 30 2023

A319748 Number of non-isomorphic set multipartitions (multisets of sets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 1, 3, 10, 25, 72, 182, 502, 1332, 3720, 10380, 30142, 88842, 270569, 842957, 2703060, 8885029, 29990388, 103743388, 367811233, 1334925589, 4957151327, 18817501736, 72972267232, 288863499000, 1166486601571, 4802115258807, 20141268290050, 86017885573548, 373852868791639
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 10 set multipartitions:
  {{1},{2}}   {{1},{2,3}}     {{1},{2,3,4}}
             {{1},{2},{2}}    {{1,2},{3,4}}
             {{1},{2},{3}}   {{1},{1},{2,3}}
                             {{1},{2},{1,2}}
                             {{1},{2},{3,4}}
                             {{1},{3},{2,3}}
                            {{1},{1},{2},{2}}
                            {{1},{2},{2},{2}}
                            {{1},{2},{3},{3}}
                            {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=R(q,n)); s+=permcount(q)*polcoef(exp(sum(t=1, n, u[t], O(x*x^n))) - exp(sum(t=1, n\2, x^t*u[t], O(x*x^n)))/(1-x), n)); s/n!)} \\ Andrew Howroyd, May 30 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 30 2023

A317748 Irregular triangle where T(n,k) is the number of factorizations of n into factors > 1 with GCD d = A027750(n, k).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 2, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 3, 0, 0, 0, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			Triangle begins:
   1:  0
   2:  0  1
   3:  0  1
   4:  0  1  1
   5:  0  1
   6:  1  0  0  1
   7:  0  1
   8:  0  2  0  1
   9:  0  1  1
  10:  1  0  0  1
  11:  0  1
  12:  2  1  0  0  0  1
  13:  0  1
  14:  1  0  0  1
  15:  1  0  0  1
  16:  0  3  1  0  1
  17:  0  1
  18:  2  0  1  0  0  1
  19:  0  1
  20:  2  1  0  0  0  1
		

Crossrefs

Row lengths are A000005. Row sums are A001055. First column is A281116. Number of nonzero terms in each row is A317751.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    goc[n_,m_]:=Length[Select[facs[n],And[And@@(Divisible[#,m]&/@#),GCD@@(#/m)==1]&]];
    Table[goc[n,d],{n,30},{d,Divisors[n]}]

Extensions

Name edited by Peter Munn, Mar 05 2025

A317775 Number of strict multiset partitions of strongly normal multisets of size n, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Original entry on oeis.org

1, 3, 10, 36, 136, 596, 2656, 13187, 68226, 381572, 2233091, 13940407, 90981030, 626911429, 4509031955, 33987610040, 266668955183, 2180991690286, 18512572760155, 163103174973092, 1487228204311039, 14027782824491946, 136585814043190619, 1371822048393658001, 14190528438090988629
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			The a(3) = 10 strict multiset partitions:
  {{1,1,1}}, {{1},{1,1}},
  {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
  {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],UnsameQ@@#&]],{n,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1,-n)/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s); for(k=1, n, forpart(p=k, s+=(-1)^(k+#p)*D(p,n))); s[n]+=1; s/2} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020
Showing 1-10 of 22 results. Next