cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A326910 BII-numbers of pairwise intersecting set-systems.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 16, 17, 20, 21, 24, 32, 34, 36, 38, 40, 48, 52, 56, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 384, 512, 514
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all pairwise intersecting set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  24: {{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  38: {{2},{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  56: {{3},{1,3},{2,3}}
		

Crossrefs

Intersecting set systems are A051185 (not-covering) or A305843 (covering).
BII-numbers of set-systems with empty intersection are A326911.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&]

A327037 Number of pairwise intersecting set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 3, 21, 913, 1183295, 909142733955, 291200434282476769116160
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts pairwise intersecting, covering set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(3) = 21 set-systems:
  {}  {{1}}  {{1,2}}      {{1,2,3}}
             {{1},{1,2}}  {{1},{1,2,3}}
             {{2},{1,2}}  {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{1,2},{1,3},{2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1,2},{1,3},{1,2,3}}
                          {{1,2},{2,3},{1,2,3}}
                          {{1,3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
                          {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Intersecting covering set-systems are A305843.
The unlabeled multiset partition version is A319765.
The case where the dual is strict is A319774.
The BII-numbers of these set-systems are A326912.
The non-covering version is A327038.
Cointersectng covering set-systems are A327040.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]

Formula

Inverse binomial transform of A327038.

Extensions

a(6)-a(7) from Christian Sievers, Aug 18 2024

A327038 Number of pairwise intersecting set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 2, 6, 34, 1020, 1188106, 909149847892, 291200434288840793135801
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts pairwise intersecting set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(2) = 6 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
The a(3) = 34 set-systems:
  {}  {{1}}    {{1}{12}}    {{1}{12}{123}}   {{1}{12}{13}{123}}
      {{2}}    {{1}{13}}    {{1}{13}{123}}   {{2}{12}{23}{123}}
      {{3}}    {{2}{12}}    {{12}{13}{23}}   {{3}{13}{23}{123}}
      {{12}}   {{2}{23}}    {{2}{12}{123}}   {{12}{13}{23}{123}}
      {{13}}   {{3}{13}}    {{2}{23}{123}}
      {{23}}   {{3}{23}}    {{3}{13}{123}}
      {{123}}  {{1}{123}}   {{3}{23}{123}}
               {{2}{123}}   {{12}{13}{123}}
               {{3}{123}}   {{12}{23}{123}}
               {{12}{123}}  {{13}{23}{123}}
               {{13}{123}}
               {{23}{123}}
		

Crossrefs

Intersecting set-systems are A051185.
The unlabeled multiset partition version is A319765.
The BII-numbers of these set-systems are A326912.
The covering case is A327037.
Cointersecting set-systems are A327039.
The case where the dual is strict is A327040.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]

Formula

Binomial transform of A327037.

Extensions

a(6)-a(7) from Christian Sievers, Aug 18 2024

A328672 Number of integer partitions of n with relatively prime parts in which no two distinct parts are relatively prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 4, 1, 1, 2, 7, 1, 6, 1, 3, 3, 10, 1, 9, 3, 5, 4, 17, 1, 23, 6, 7, 6, 20, 3, 36, 9, 15, 7, 45, 5, 56, 14, 17, 20, 65, 7, 83, 18, 40
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2019

Keywords

Comments

Positions of terms greater than 1 are {31, 37, 41, 43, 46, 47, 49, ...}.
A partition with no two distinct parts relatively prime is said to be intersecting.

Examples

			Examples:
  a(31) = 2:         a(46) = 2:
    (15,10,6)          (15,15,10,6)
    (1^31)             (1^46)
  a(37) = 3:         a(47) = 7:
    (15,12,10)         (20,15,12)
    (15,10,6,6)        (21,14,12)
    (1^37)             (20,15,6,6)
  a(41) = 4:           (21,14,6,6)
    (20,15,6)          (15,12,10,10)
    (21,14,6)          (15,10,10,6,6)
    (15,10,10,6)       (1^47)
    (1^41)           a(49) = 6:
  a(43) = 4:           (24,15,10)
    (18,15,10)         (18,15,10,6)
    (15,12,10,6)       (15,12,12,10)
    (15,10,6,6,6)      (15,12,10,6,6)
    (1^43)             (15,10,6,6,6,6)
                       (1^39)
		

Crossrefs

The Heinz numbers of these partitions are A328679.
The strict case is A318715.
The version for non-isomorphic multiset partitions is A319759.
Relatively prime partitions are A000837.
Intersecting partitions are A328673.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[#],{2}]]&]],{n,0,32}]

Formula

a(n > 0) = A202425(n) + 1.

A328868 Heinz numbers of integer partitions with no two (not necessarily distinct) parts relatively prime, but with no divisor in common to all of the parts.

Original entry on oeis.org

17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 230347, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   17719: {6,10,15}
   40807: {6,14,21}
   43381: {6,15,20}
   50431: {10,12,15}
   74269: {6,10,45}
   83143: {10,15,18}
  101543: {6,21,28}
  105703: {6,15,40}
  116143: {12,14,21}
  121307: {10,15,24}
  123469: {12,15,20}
  139919: {6,15,50}
  140699: {6,22,33}
  142883: {6,10,75}
  171613: {6,14,63}
  181831: {6,20,45}
  185803: {10,14,35}
  191479: {14,18,21}
  203557: {15,18,20}
  205813: {10,15,36}
  211381: {10,12,45}
  213239: {6,15,70}
  215267: {6,10,105}
  219271: {6,26,39}
  230347: {6,6,10,15}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A202425.
Terms of A328679 that are not powers of 2.
The strict case is A318716 (preceded by 2).
A ranking using binary indices (instead of prime indices) is A326912.
Heinz numbers of relatively prime partitions are A289509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    dv=Select[Range[100000],GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Tuples[Union[primeMS[#]],2]]&]

A328676 Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 3, 5, 5, 11, 7, 16, 14, 18, 22, 34, 30, 47, 45, 59, 66, 89, 90, 118, 125, 159, 169, 218, 225, 289, 304, 369, 400, 486, 520, 636, 680, 806, 873, 1051, 1105, 1333, 1424, 1664, 1803, 2122, 2253, 2659, 2841, 3283, 3560, 4118, 4388, 5096
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2019

Keywords

Examples

			The a(4) = 1 through a(11) = 11 partitions:
  1111  32     111111  43       53        54         73          65
        11111          52       332       72         433         74
                       322      11111111  522        532         83
                       1111111            3222       3322        92
                                          111111111  1111111111  443
                                                                 533
                                                                 722
                                                                 3332
                                                                 5222
                                                                 32222
                                                                 11111111111
		

Crossrefs

The Heinz numbers of these partitions are given by A328677.
The strict case is A328678.
The binary index version is A328671.
Relatively prime partitions are A000837.
Partitions whose distinct parts are pairwise indivisible are A305148.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]

A329560 BII-numbers of antichains of sets with empty intersection.

Original entry on oeis.org

0, 3, 9, 10, 11, 12, 18, 33, 52, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 258, 264, 266, 268, 274, 288, 292, 304, 308, 513, 520, 521, 524, 528, 532, 545, 560, 564, 772, 776, 780, 784, 788, 800, 804, 816, 820, 832
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is an antichain if no edge is a proper subset of any other.
Empty intersection means there is no vertex in common to all the edges

Examples

			The sequence of terms together with their binary expansions and corresponding set-systems begins:
    0:          0 ~ {}
    3:         11 ~ {{1},{2}}
    9:       1001 ~ {{1},{3}}
   10:       1010 ~ {{2},{3}}
   11:       1011 ~ {{1},{2},{3}}
   12:       1100 ~ {{1,2},{3}}
   18:      10010 ~ {{2},{1,3}}
   33:     100001 ~ {{1},{2,3}}
   52:     110100 ~ {{1,2},{1,3},{2,3}}
  129:   10000001 ~ {{1},{4}}
  130:   10000010 ~ {{2},{4}}
  131:   10000011 ~ {{1},{2},{4}}
  132:   10000100 ~ {{1,2},{4}}
  136:   10001000 ~ {{3},{4}}
  137:   10001001 ~ {{1},{3},{4}}
  138:   10001010 ~ {{2},{3},{4}}
  139:   10001011 ~ {{2},{3},{4}}
  140:   10001100 ~ {{1,2},{3},{4}}
  144:   10010000 ~ {{1,3},{4}}
  146:   10010010 ~ {{2},{1,3},{4}}
  148:   10010100 ~ {{1,2},{1,3},{4}}
		

Crossrefs

Intersection of A326911 and A326704.
BII-numbers of intersecting set-systems with empty intersecting are A326912.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],#==0||Intersection@@bpe/@bpe[#]=={}&&stableQ[bpe/@bpe[#],SubsetQ]&]

A329561 BII-numbers of intersecting antichains of sets.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 320, 512, 516, 544, 548, 576, 768, 772, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2080, 2096, 2112, 2304, 2320, 2368, 2560, 2592, 2624, 2816, 2880, 3072, 3088, 3104, 3120, 3136, 4096
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  320: {{1,2,3},{1,4}}
  512: {{2,4}}
  516: {{1,2},{2,4}}
		

Crossrefs

Intersection of A326704 (antichains) and A326910 (intersecting).
Covering intersecting antichains of sets are counted by A305844.
BII-numbers of antichains with empty intersection are A329560.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&]

A329628 Smallest BII-number of an intersecting antichain with n edges.

Original entry on oeis.org

0, 1, 20, 52, 2880, 275520
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
       0: {}
       1: {{1}}
      20: {{1,2},{1,3}}
      52: {{1,2},{1,3},{2,3}}
    2880: {{1,2,3},{1,4},{2,4},{3,4}}
  275520: {{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,5}}
		

Crossrefs

The not necessarily intersecting version is A329626.
MM-numbers of intersecting antichains are A329366.
BII-numbers of antichains are A326704.
BII-numbers of intersecting set-systems are A326910.
BII-numbers of intersecting antichains are A329561.
Covering intersecting antichains of sets are A305844.
Non-isomorphic intersecting antichains of multisets are A306007.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&],Length[bpe[#]]&]

A326911 BII-numbers of set-systems with empty intersection.

Original entry on oeis.org

0, 3, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all set-systems with empty intersection together with their BII-numbers begins:
   0: {}
   3: {{1},{2}}
   7: {{1},{2},{1,2}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  18: {{2},{1,3}}
  19: {{1},{2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  25: {{1},{3},{1,3}}
  26: {{2},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],#==0||Intersection@@bpe/@bpe[#]=={}&]
Showing 1-10 of 11 results. Next