cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329555 Smallest MM-number of a clutter (connected antichain) of n distinct sets.

Original entry on oeis.org

1, 2, 377, 16211, 761917
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
       1: {}
       2: {{}}
     377: {{1,2},{1,3}}
   16211: {{1,2},{1,3},{1,4}}
  761917: {{1,2},{1,3},{1,4},{2,3}}
		

Crossrefs

Spanning cutters of distinct sets are counted by A048143.
MM-numbers of connected weak-antichains are A329559.
MM-numbers of sets of sets are A302494.
The smallest BII-number of a clutter with n edges is A329627.
Not requiring the edges to form an antichain gives A329552.
Connected numbers are A305078.
Stable numbers are A316476.
Other MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
    Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]

A329561 BII-numbers of intersecting antichains of sets.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 320, 512, 516, 544, 548, 576, 768, 772, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2080, 2096, 2112, 2304, 2320, 2368, 2560, 2592, 2624, 2816, 2880, 3072, 3088, 3104, 3120, 3136, 4096
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  320: {{1,2,3},{1,4}}
  512: {{2,4}}
  516: {{1,2},{2,4}}
		

Crossrefs

Intersection of A326704 (antichains) and A326910 (intersecting).
Covering intersecting antichains of sets are counted by A305844.
BII-numbers of antichains with empty intersection are A329560.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&]

A329626 Smallest BII-number of an antichain with n edges.

Original entry on oeis.org

0, 1, 3, 11, 139, 820, 2868, 35636, 199476, 723764
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
       0: {}
       1: {{1}}
       3: {{1},{2}}
      11: {{1},{2},{3}}
     139: {{1},{2},{3},{4}}
     820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
    2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
   35636: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{5}}
  199476: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5}}
  723764: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5},{3,5}}
		

Crossrefs

The connected case is A329627.
The intersecting case is A329628.
BII-numbers of antichains are A326704.
Antichain covers are A006126.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_]:=!Apply[Or,Outer[#1=!=#2&&SubsetQ[#1,#2]&,u,u,1],{0,1}];
    First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#]]&],Length[bpe[#]]&]

A329628 Smallest BII-number of an intersecting antichain with n edges.

Original entry on oeis.org

0, 1, 20, 52, 2880, 275520
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
       0: {}
       1: {{1}}
      20: {{1,2},{1,3}}
      52: {{1,2},{1,3},{2,3}}
    2880: {{1,2,3},{1,4},{2,4},{3,4}}
  275520: {{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,5}}
		

Crossrefs

The not necessarily intersecting version is A329626.
MM-numbers of intersecting antichains are A329366.
BII-numbers of antichains are A326704.
BII-numbers of intersecting set-systems are A326910.
BII-numbers of intersecting antichains are A329561.
Covering intersecting antichains of sets are A305844.
Non-isomorphic intersecting antichains of multisets are A306007.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&],Length[bpe[#]]&]
Showing 1-4 of 4 results.