cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329560 BII-numbers of antichains of sets with empty intersection.

Original entry on oeis.org

0, 3, 9, 10, 11, 12, 18, 33, 52, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 258, 264, 266, 268, 274, 288, 292, 304, 308, 513, 520, 521, 524, 528, 532, 545, 560, 564, 772, 776, 780, 784, 788, 800, 804, 816, 820, 832
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is an antichain if no edge is a proper subset of any other.
Empty intersection means there is no vertex in common to all the edges

Examples

			The sequence of terms together with their binary expansions and corresponding set-systems begins:
    0:          0 ~ {}
    3:         11 ~ {{1},{2}}
    9:       1001 ~ {{1},{3}}
   10:       1010 ~ {{2},{3}}
   11:       1011 ~ {{1},{2},{3}}
   12:       1100 ~ {{1,2},{3}}
   18:      10010 ~ {{2},{1,3}}
   33:     100001 ~ {{1},{2,3}}
   52:     110100 ~ {{1,2},{1,3},{2,3}}
  129:   10000001 ~ {{1},{4}}
  130:   10000010 ~ {{2},{4}}
  131:   10000011 ~ {{1},{2},{4}}
  132:   10000100 ~ {{1,2},{4}}
  136:   10001000 ~ {{3},{4}}
  137:   10001001 ~ {{1},{3},{4}}
  138:   10001010 ~ {{2},{3},{4}}
  139:   10001011 ~ {{2},{3},{4}}
  140:   10001100 ~ {{1,2},{3},{4}}
  144:   10010000 ~ {{1,3},{4}}
  146:   10010010 ~ {{2},{1,3},{4}}
  148:   10010100 ~ {{1,2},{1,3},{4}}
		

Crossrefs

Intersection of A326911 and A326704.
BII-numbers of intersecting set-systems with empty intersecting are A326912.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],#==0||Intersection@@bpe/@bpe[#]=={}&&stableQ[bpe/@bpe[#],SubsetQ]&]

A329625 Smallest BII-number of a connected set-system with n edges.

Original entry on oeis.org

0, 1, 5, 7, 23, 31, 63, 127, 383, 511, 1023, 2047, 4095, 8191
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of terms together with their corresponding set-systems begins:
     0: {}
     1: {{1}}
     5: {{1},{1,2}}
     7: {{1},{2},{1,2}}
    23: {{1},{2},{1,2},{1,3}}
    31: {{1},{2},{1,2},{3},{1,3}}
    63: {{1},{2},{1,2},{3},{1,3},{2,3}}
   127: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3}}
   383: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,4}}
   511: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{4},{1,4}}
		

Crossrefs

The smallest BII-number of a set-system with n edges is A000225(n).
The smallest BII-number of a set-system with n vertices is A072639(n).
BII-numbers of connected set-systems are A326749.
MM-numbers of connected set-systems are A328514.
The case of clutters is A329627.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    First/@GatherBy[Select[Range[0,1000],Length[csm[bpe/@bpe[#]]]<=1&],Length[bpe[#]]&]

A329628 Smallest BII-number of an intersecting antichain with n edges.

Original entry on oeis.org

0, 1, 20, 52, 2880, 275520
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
       0: {}
       1: {{1}}
      20: {{1,2},{1,3}}
      52: {{1,2},{1,3},{2,3}}
    2880: {{1,2,3},{1,4},{2,4},{3,4}}
  275520: {{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,5}}
		

Crossrefs

The not necessarily intersecting version is A329626.
MM-numbers of intersecting antichains are A329366.
BII-numbers of antichains are A326704.
BII-numbers of intersecting set-systems are A326910.
BII-numbers of intersecting antichains are A329561.
Covering intersecting antichains of sets are A305844.
Non-isomorphic intersecting antichains of multisets are A306007.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&],Length[bpe[#]]&]

A329627 Smallest BII-number of a clutter (connected antichain) with n edges.

Original entry on oeis.org

0, 1, 20, 52, 308, 820, 2868, 68404, 199476, 723764
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is an antichain if no edge is a proper subset of any other.
For n > 1, a(n) appears to be the number whose binary indices are the first n terms of A018900.

Examples

			The sequence of terms together with their corresponding set-systems begins:
       0: {}
       1: {{1}}
      20: {{1,2},{1,3}}
      52: {{1,2},{1,3},{2,3}}
     308: {{1,2},{1,3},{2,3},{1,4}}
     820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
    2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
   68404: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5}}
  199476: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5}}
  723764: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5},{3,5}}
		

Crossrefs

The version for MM-numbers is A329555.
BII-numbers of clutters are A326750.
Clutters of sets are counted by A048143.
Minimum BII-numbers of connected set-systems are A329625.
Minimum BII-numbers of antichains are A329626.
MM-numbers of connected weak antichains of multisets are A329559.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#]]&&Length[csm[bpe/@bpe[#]]]<=1&],Length[bpe[#]]&]
Showing 1-4 of 4 results.