A326853 BII-numbers of set-systems where every two covered vertices appear together in some edge (cointersecting).
0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1
Keywords
Examples
The sequence of all cointersecting set-systems together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 7: {{1},{2},{1,2}} 8: {{3}} 16: {{1,3}} 17: {{1},{1,3}} 24: {{3},{1,3}} 25: {{1},{3},{1,3}} 32: {{2,3}} 34: {{2},{2,3}} 40: {{3},{2,3}} 42: {{2},{3},{2,3}} 52: {{1,2},{1,3},{2,3}} 53: {{1},{1,2},{1,3},{2,3}} 54: {{2},{1,2},{1,3},{2,3}} 55: {{1},{2},{1,2},{1,3},{2,3}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[0,100],stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Comments