A326853
BII-numbers of set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1
The sequence of all cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
BII-numbers of pairwise intersecting set-systems are
A326910.
Cointersecting set-systems are
A327039, with covering version
A327040.
The T_0 or costrict case is
A327052.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
A327039
Number of set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 2, 7, 88, 25421, 2077323118, 9221293242272922067, 170141182628636920942528022609657505092
Offset: 0
The a(0) = 1 through a(2) = 7 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The unlabeled multiset partition version is
A319752.
The BII-numbers of these set-systems are
A326853.
The pairwise intersecting case is
A327038.
The case where the dual is strict is
A327052.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A327040
Number of set-systems covering n vertices, every two of which appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 4, 72, 25104, 2077196832, 9221293229809363008, 170141182628636920877978969957369949312
Offset: 0
The a(0) = 1 through a(2) = 4 set-systems:
{} {{1}} {{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The unlabeled multiset partition version is
A319752.
The BII-numbers of these set-systems are
A326853.
The pairwise intersecting case is
A327037.
The non-covering version is
A327039.
The case where the dual is strict is
A327053.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A327020
Number of antichains covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 1, 2, 17, 1451, 3741198
Offset: 0
The a(0) = 1 through a(4) = 17 antichains:
{} {{1}} {{12}} {{123}} {{1234}}
{{12}{13}{23}} {{12}{134}{234}}
{{13}{124}{234}}
{{14}{123}{234}}
{{23}{124}{134}}
{{24}{123}{134}}
{{34}{123}{124}}
{{123}{124}{134}}
{{123}{124}{234}}
{{123}{134}{234}}
{{124}{134}{234}}
{{12}{13}{14}{234}}
{{12}{23}{24}{134}}
{{13}{23}{34}{124}}
{{14}{24}{34}{123}}
{{123}{124}{134}{234}}
{{12}{13}{14}{23}{24}{34}}
Covering, intersecting antichains are
A305844.
Covering, T1 antichains are
A319639.
Cointersecting set-systems are
A327039.
Covering, cointersecting set-systems are
A327040.
Covering, cointersecting set-systems are
A327051.
The non-covering version is
A327057.
Covering, intersecting, T1 set-systems are
A327058.
Unlabeled cointersecting antichains of multisets are
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
A327052
Number of T_0 (costrict) set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 2, 6, 75, 24981, 2077072342, 9221293211115589902, 170141182628636920748880864929055912851
Offset: 0
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The unlabeled multiset partition version is
A319760.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A326854
BII-numbers of T_0 (costrict), pairwise intersecting set-systems where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 5, 6, 8, 17, 24, 34, 40, 52, 69, 70, 81, 84, 85, 88, 98, 100, 102, 104, 112, 116, 120, 128, 257, 384, 514, 640, 772, 1029, 1030, 1281, 1284, 1285, 1408, 1538, 1540, 1542, 1664, 1792, 1796, 1920, 2056, 2176, 2320, 2592, 2880, 3120, 3152, 3168, 3184
Offset: 1
The sequence of all set-systems that are pairwise intersecting, cointersecting, and costrict, together with their BII-numbers, begins:
0: {}
1: {{1}}
2: {{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
85: {{1},{1,2},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
98: {{2},{2,3},{1,2,3}}
100: {{1,2},{2,3},{1,2,3}}
102: {{2},{1,2},{2,3},{1,2,3}}
These set-systems are counted by
A319774 (covering).
Cf.
A029931,
A048793,
A051185,
A305843,
A319765,
A326031,
A327037,
A327038,
A327041,
A327052,
A327053.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,10000],UnsameQ@@dual[bpe/@bpe[#]]&&stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Showing 1-6 of 6 results.
Comments