A326853
BII-numbers of set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1
The sequence of all cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
BII-numbers of pairwise intersecting set-systems are
A326910.
Cointersecting set-systems are
A327039, with covering version
A327040.
The T_0 or costrict case is
A327052.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
A327040
Number of set-systems covering n vertices, every two of which appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 4, 72, 25104, 2077196832, 9221293229809363008, 170141182628636920877978969957369949312
Offset: 0
The a(0) = 1 through a(2) = 4 set-systems:
{} {{1}} {{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The unlabeled multiset partition version is
A319752.
The BII-numbers of these set-systems are
A326853.
The pairwise intersecting case is
A327037.
The non-covering version is
A327039.
The case where the dual is strict is
A327053.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A337667
Number of compositions of n where any two parts have a common divisor > 1.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 7, 32768, 1027, 65537, 79, 133088, 19, 262145, 4099, 524408, 25, 1056731, 51, 2097158, 16636, 4194317, 79, 8421248, 196, 16777712
Offset: 0
The a(2) = 1 through a(10) = 17 compositions (A = 10):
2 3 4 5 6 7 8 9 A
22 24 26 36 28
33 44 63 46
42 62 333 55
222 224 64
242 82
422 226
2222 244
262
424
442
622
2224
2242
2422
4222
22222
A337604 counts these compositions of length 3.
A337694 gives Heinz numbers of the unordered version.
A318717 is the unordered strict case.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],stabQ[#,CoprimeQ]&]],{n,0,15}]
A327098
BII-numbers of set-systems with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 128, 260, 261, 262, 263, 272, 273, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309
Offset: 1
The sequence of all set-systems with cut-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
36: {{1,2},{2,3}}
37: {{1},{1,2},{2,3}}
38: {{2},{1,2},{2,3}}
39: {{1},{2},{1,2},{2,3}}
44: {{1,2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
46: {{2},{1,2},{3},{2,3}}
47: {{1},{2},{1,2},{3},{2,3}}
48: {{1,3},{2,3}}
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for spanning edge-connectivity 1 are
A327111.
Integer partitions with cut-connectivity 1 are counted by
A322390.
Labeled connected separable graphs are counted by
A327114.
Connected separable set-systems are counted by
A327197.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==1&]
A319774
Number of intersecting set systems spanning n vertices whose dual is also an intersecting set system.
Original entry on oeis.org
1, 1, 2, 14, 814, 1174774, 909125058112, 291200434263385001951232
Offset: 0
The a(3) = 14 set systems:
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{1,2,3}}
{{2},{1,2},{2,3},{1,2,3}}
{{3},{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
Intersecting set-systems are
A051185.
The unlabeled multiset partition version is
A319773.
The version without strict dual is
A327038.
Cointersecting set-systems are
A327039.
The BII-numbers of these set-systems are
A327061.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[#,Intersection[#1,#2]=={}&]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}] (* Gus Wiseman, Aug 19 2019 *)
A337666
Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1.
Original entry on oeis.org
0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176
Offset: 1
The sequence together with the corresponding compositions begins:
0: () 138: (4,2,2) 546: (4,4,2)
2: (2) 160: (2,6) 552: (4,2,4)
4: (3) 162: (2,4,2) 554: (4,2,2,2)
8: (4) 168: (2,2,4) 640: (2,8)
10: (2,2) 170: (2,2,2,2) 642: (2,6,2)
16: (5) 256: (9) 648: (2,4,4)
32: (6) 260: (6,3) 650: (2,4,2,2)
34: (4,2) 288: (3,6) 672: (2,2,6)
36: (3,3) 292: (3,3,3) 674: (2,2,4,2)
40: (2,4) 512: (10) 680: (2,2,2,4)
42: (2,2,2) 514: (8,2) 682: (2,2,2,2,2)
64: (7) 520: (6,4) 1024: (11)
128: (8) 522: (6,2,2) 2048: (12)
130: (6,2) 528: (5,5) 2050: (10,2)
136: (4,4) 544: (4,6) 2052: (9,3)
A337604 counts these compositions of length 3.
A337694 is the version for Heinz numbers of partitions.
A051185 and
A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (
A066099):
-
A233564 ranks strict compositions.
-
A272919 ranks constant compositions.
-
A291166 appears to rank relatively prime compositions.
-
A326674 is greatest common divisor.
-
A333227 ranks coprime (Mathematica definition) compositions.
-
A333228 ranks compositions with distinct parts coprime.
-
A335235 ranks singleton or coprime compositions.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&]
A327020
Number of antichains covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 1, 2, 17, 1451, 3741198
Offset: 0
The a(0) = 1 through a(4) = 17 antichains:
{} {{1}} {{12}} {{123}} {{1234}}
{{12}{13}{23}} {{12}{134}{234}}
{{13}{124}{234}}
{{14}{123}{234}}
{{23}{124}{134}}
{{24}{123}{134}}
{{34}{123}{124}}
{{123}{124}{134}}
{{123}{124}{234}}
{{123}{134}{234}}
{{124}{134}{234}}
{{12}{13}{14}{234}}
{{12}{23}{24}{134}}
{{13}{23}{34}{124}}
{{14}{24}{34}{123}}
{{123}{124}{134}{234}}
{{12}{13}{14}{23}{24}{34}}
Covering, intersecting antichains are
A305844.
Covering, T1 antichains are
A319639.
Cointersecting set-systems are
A327039.
Covering, cointersecting set-systems are
A327040.
Covering, cointersecting set-systems are
A327051.
The non-covering version is
A327057.
Covering, intersecting, T1 set-systems are
A327058.
Unlabeled cointersecting antichains of multisets are
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
A327082
BII-numbers of set-systems with cut-connectivity 2.
Original entry on oeis.org
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 256, 257, 384, 385, 512, 514, 640, 642, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850
Offset: 1
The sequence of all set-systems with cut-connectivity 2 together with their BII-numbers begins:
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
256: {{1,4}}
257: {{1},{1,4}}
384: {{4},{1,4}}
385: {{1},{4},{1,4}}
512: {{2,4}}
514: {{2},{2,4}}
640: {{4},{2,4}}
642: {{2},{4},{2,4}}
The first term involving an edge of size 3 is 832: {{1,2,3},{1,4},{2,4}}.
BII-numbers for non-spanning edge-connectivity 2 are
A327097.
BII-numbers for spanning edge-connectivity 2 are
A327108.
The cut-connectivity 1 version is
A327098.
The cut-connectivity > 1 version is
A327101.
Covering 2-cut-connected set-systems are counted by
A327112.
Covering set-systems with cut-connectivity 2 are counted by
A327113.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==2&]
A327057
Number of antichains covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 2, 4, 9, 36, 1572, 3750221
Offset: 0
The a(0) = 1 through a(3) = 9 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3},{2,3}}
The BII-numbers of these set-systems are the intersection of
A326704 and
A326853.
Cointersecting set-systems are
A327039.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,5}]
A327038
Number of pairwise intersecting set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 2, 6, 34, 1020, 1188106, 909149847892, 291200434288840793135801
Offset: 0
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
The a(3) = 34 set-systems:
{} {{1}} {{1}{12}} {{1}{12}{123}} {{1}{12}{13}{123}}
{{2}} {{1}{13}} {{1}{13}{123}} {{2}{12}{23}{123}}
{{3}} {{2}{12}} {{12}{13}{23}} {{3}{13}{23}{123}}
{{12}} {{2}{23}} {{2}{12}{123}} {{12}{13}{23}{123}}
{{13}} {{3}{13}} {{2}{23}{123}}
{{23}} {{3}{23}} {{3}{13}{123}}
{{123}} {{1}{123}} {{3}{23}{123}}
{{2}{123}} {{12}{13}{123}}
{{3}{123}} {{12}{23}{123}}
{{12}{123}} {{13}{23}{123}}
{{13}{123}}
{{23}{123}}
Intersecting set-systems are
A051185.
The unlabeled multiset partition version is
A319765.
The BII-numbers of these set-systems are
A326912.
Cointersecting set-systems are
A327039.
The case where the dual is strict is
A327040.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
Showing 1-10 of 16 results.
Comments