cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A327125 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.

Examples

			Triangle begins:
    1
    0   1
    1   0   1
    4   3   0   1
   26  28   9   0   1
  296 490 212  25   0   1
		

Crossrefs

After the first column, same as A327126.
The unlabeled version is A327127.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = 1.
Column k = 1 is A327114, if we assume A327114(1) = 1.
Row sums without the first column are A001187.
Row sums without the first two columns are A013922.
Different from A327069.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]

Extensions

a(21)-a(28) from Robert Price, May 20 2021
a(1) and a(2) corrected by Robert Price, May 20 2021

A327098 BII-numbers of set-systems with cut-connectivity 1.

Original entry on oeis.org

1, 2, 8, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 128, 260, 261, 262, 263, 272, 273, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the cut-connectivity (A326786, A327237), of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex and no edges has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The sequence of all set-systems with cut-connectivity 1 together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   8: {{3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  36: {{1,2},{2,3}}
  37: {{1},{1,2},{2,3}}
  38: {{2},{1,2},{2,3}}
  39: {{1},{2},{1,2},{2,3}}
  44: {{1,2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  46: {{2},{1,2},{3},{2,3}}
  47: {{1},{2},{1,2},{3},{2,3}}
  48: {{1,3},{2,3}}
		

Crossrefs

A subset of A326749.
Positions of 1's in A326786.
BII-numbers for cut-connectivity 2 are A327082.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity 1 are A327111.
Integer partitions with cut-connectivity 1 are counted by A322390.
Labeled connected separable graphs are counted by A327114.
Connected separable set-systems are counted by A327197.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==1&]

A327097 BII-numbers of set-systems with non-spanning edge-connectivity 2.

Original entry on oeis.org

5, 6, 17, 20, 24, 34, 36, 40, 48, 53, 54, 55, 60, 61, 62, 63, 65, 66, 68, 71, 72, 80, 86, 87, 89, 92, 93, 94, 95, 96, 101, 103, 106, 108, 109, 110, 111, 113, 114, 115, 121, 122, 123, 257, 260, 272, 308, 309, 310, 311, 316, 317, 318, 319, 320, 326, 327, 342
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any isolated vertices) to result in a disconnected or empty set-system.

Examples

			The sequence of all set-systems with non-spanning edge-connectivity 2 together with their BII-numbers begins:
   5: {{1},{1,2}}
   6: {{2},{1,2}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  24: {{3},{1,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
		

Crossrefs

Positions of 2's in A326787.
BII-numbers for vertex-connectivity 2 are A327082.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for non-spanning edge-connectivity > 1 are A327102.
BII-numbers for spanning edge-connectivity 2 are A327108.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
    Select[Range[0,100],edgeConn[bpe[#]]==2&]

A327101 BII-numbers of 2-cut-connected set-systems (cut-connectivity >= 2).

Original entry on oeis.org

4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1

Views

Author

Gus Wiseman, Aug 22 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is 2-cut-connected if any single vertex can be removed (along with any empty edges) without making the set-system disconnected or empty. Except for cointersecting set-systems (A326853), this is the same as 2-vertex-connectivity.

Examples

			The sequence of all 2-cut-connected set-systems together with their BII-numbers begins:
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
  16: {{1,3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
		

Crossrefs

Positions of numbers >= 2 in A326786.
2-cut-connected graphs are counted by A013922, if we assume A013922(2) = 0.
2-cut-connected integer partitions are counted by A322387.
BII-numbers for cut-connectivity 2 are A327082.
BII-numbers for cut-connectivity 1 are A327098.
BII-numbers for non-spanning edge-connectivity >= 2 are A327102.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
Covering 2-cut-connected set-systems are counted by A327112.
Covering set-systems with cut-connectivity 2 are counted by A327113.
The labeled cut-connectivity triangle is A327125, with unlabeled version A327127.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Select[Range[0,100],cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]>=2&]

Formula

If (*) is intersection and (-) is complement, we have A327101 * A326704 = A326751 - A058891, i.e., the intersection of A327101 (this sequence) with A326704 (antichains) is the complement of A058891 (singletons) in A326751 (blobs).

A327112 Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.

Original entry on oeis.org

0, 0, 4, 72, 29856
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			Non-isomorphic representatives of the a(3) = 72 set-systems:
  {{123}}
  {{3}{123}}
  {{23}{123}}
  {{2}{3}{123}}
  {{1}{23}{123}}
  {{3}{23}{123}}
  {{12}{13}{23}}
  {{13}{23}{123}}
  {{1}{2}{3}{123}}
  {{1}{3}{23}{123}}
  {{2}{3}{23}{123}}
  {{3}{12}{13}{23}}
  {{2}{13}{23}{123}}
  {{3}{13}{23}{123}}
  {{12}{13}{23}{123}}
  {{1}{2}{3}{23}{123}}
  {{2}{3}{12}{13}{23}}
  {{1}{2}{13}{23}{123}}
  {{2}{3}{13}{23}{123}}
  {{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}}
  {{1}{2}{3}{13}{23}{123}}
  {{2}{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

Covering 2-cut-connected graphs are A013922, if we assume A013922(2) = 1.
Covering 1-cut-connected antichains (clutters) are A048143, if we assume A048143(0) = A048143(1) =0.
Covering 2-cut-connected antichains (blobs) are A275307, if we assume A275307(1) = 0.
Covering set-systems with cut-connectivity 2 are A327113.
2-vertex-connected integer partitions are A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are A327101.
The cut-connectivity of the set-system with BII-number n is A326786(n).

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]

A327127 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices where k is the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 2, 0, 1, 13, 11, 7, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

A graph with one vertex and no edges is considered to be connected. Except for complete graphs, this is the same as vertex-connectivity (A259862).
There are two ways to define (vertex) connectivity: the minimum size of a vertex cut, and the minimum of the maximum number of internally disjoint paths between two distinct vertices. For non-complete graphs they coincide, which is tremendously useful. For complete graphs with at least 2 vertices, there are no cuts but the second method still works so it is customary to use it to justify the connectivity of K_n being n-1. - Brendan McKay, Aug 28 2019.

Examples

			Triangle begins:
   1
   0  1
   1  0  1
   2  1  0  1
   5  3  2  0  1
  13 11  7  2  0  1
		

Crossrefs

Row sums are A000088.
Column k = 0 is A000719, if we assume A000719(0) = 1.
Column k = 1 is A052442, if we assume A052442(1) = 1 and A052442(2) = 0.
The labeled version is A327125.
A more standard version (zeros removed) is A259862.

A327113 Number of set-systems covering n vertices with cut-connectivity 2.

Original entry on oeis.org

0, 0, 4, 0, 4752
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The a(2) = 4 set-systems:
  {{1,2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Covering graphs with cut-connectivity >= 2 are A013922, if we assume A013922(2) = 1.
Covering antichains (blobs) with cut-connectivity >= 2 are A275307, if we assume A275307(1) = 0.
2-vertex-connected integer partitions are A322387.
Connected covering set-systems are A323818.
Covering set-systems with cut-connectivity >= 2 are A327112.
The cut-connectivity of the set-system with BII-number n is A326786(n).
BII-numbers of set-systems with cut-connectivity 2 are A327082.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]==2&]],{n,0,3}]

A327198 Number of labeled simple graphs covering n vertices with vertex-connectivity 2.

Original entry on oeis.org

0, 0, 0, 1, 9, 212, 9600, 789792, 114812264, 29547629568, 13644009626400, 11489505388892800, 17918588321874717312, 52482523149603539181312, 292311315623259148521270784, 3129388799344153886272170009600, 64965507855114369076680860799267840
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==2&]],{n,0,5}]

Formula

a(n) = A013922(n) - A005644(n) for n >= 3. - Andrew Howroyd, Dec 26 2020

Extensions

Terms a(6) and beyond from Andrew Howroyd, Dec 26 2020

A327100 BII-numbers of antichains of sets with cut-connectivity 1.

Original entry on oeis.org

1, 2, 8, 20, 36, 48, 128, 260, 272, 276, 292, 304, 308, 320, 516, 532, 544, 548, 560, 564, 576, 768, 784, 788, 800, 804, 1040, 1056, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304, 2308, 2324, 2336, 2352, 2560, 2564, 2576, 2596, 2608, 2816, 2820, 2832, 2848
Offset: 1

Views

Author

Gus Wiseman, Aug 22 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the cut-connectivity of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039, A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The sequence of all antichains of sets with vertex-connectivity 1 together with their BII-numbers begins:
    1: {{1}}
    2: {{2}}
    8: {{3}}
   20: {{1,2},{1,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
  128: {{4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  292: {{1,2},{2,3},{1,4}}
  304: {{1,3},{2,3},{1,4}}
  308: {{1,2},{1,3},{2,3},{1,4}}
  320: {{1,2,3},{1,4}}
  516: {{1,2},{2,4}}
  532: {{1,2},{1,3},{2,4}}
  544: {{2,3},{2,4}}
  548: {{1,2},{2,3},{2,4}}
  560: {{1,3},{2,3},{2,4}}
  564: {{1,2},{1,3},{2,3},{2,4}}
		

Crossrefs

Positions of 1's in A326786.
The graphical case is A327114.
BII numbers of antichains with vertex-connectivity >= 1 are A326750.
BII-numbers for cut-connectivity 2 are A327082.
BII-numbers for cut-connectivity 1 are A327098.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Select[Range[0,100],stableQ[bpe/@bpe[#],SubsetQ]&&cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]

Formula

If (+) is union and (-) is complement, we have A327100 = A058891 + (A326750 - A326751).

A327374 BII-numbers of set-systems with vertex-connectivity 2.

Original entry on oeis.org

52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			The sequence of all set-systems with vertex-connectivity 2 together with their BII-numbers begins:
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  67: {{1},{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  69: {{1},{1,2},{1,2,3}}
  70: {{2},{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
  72: {{3},{1,2,3}}
  73: {{1},{3},{1,2,3}}
  74: {{2},{3},{1,2,3}}
  75: {{1},{2},{3},{1,2,3}}
		

Crossrefs

Positions of 2's in A327051.
Cut-connectivity 2 is A327082.
Spanning edge-connectivity 2 is A327108.
Non-spanning edge-connectivity 2 is A327097.
Vertex-connectivity 3 is A327376.
Labeled graphs with vertex-connectivity 2 are A327198.
Set-systems with vertex-connectivity 2 are A327375.
The enumeration of labeled graphs by vertex-connectivity is A327334.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Select[Range[0,200],vertConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==2&]
Showing 1-10 of 12 results. Next